Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.
The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups. Most lines remained karyotypically normal, but there was a progressive tendency to acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA methylation patterns changed haphazardly with no link to time in culture. Structural variants, determined from the SNP arrays, also appeared sporadically. No common variants related to culture were observed on chromosomes 1, 12 and 17, but a minimal amplicon in chromosome 20q11.21, including three genes, ID1, BCL2L1 and HM13, expressed in human ES cells, occurred in >20% of the lines. Of these genes, BCL2L1 is a strong candidate for driving culture adaptation of ES cells.
The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue-nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.
ObjectiveTo develop a simple and efficient method for producing homogeneous populations of monocytes and macrophages from human embryonic stem cells (hES).Materials and MethodsHuman embryonic stem cell lines KCL001, KCL002, and HUES-2 were differentiated into monocytes by coculture-free differentiation with two growth factors using a three-step method. The method involved embryoid body (EB) formation in hES media, directed differentiation with macrophage colony-stimulating factor and interleukin (IL)-3, and harvest of nonadherent monocytes from the culture supernatants. hES monocytes (esMCs) were analyzed by microscopy, flow cytometry, transcriptome analysis, and tested for the ability to differentiate into macrophages. hES monocyte–derived macrophages (esMDM) were analyzed for phagocytosis and endocytosis by microscopy and flow cytometry, cytokine secretion by multiplex cytokine assay, and for interferon (IFN)-γ and IL-4 activation by flow cytometry.ResultsHomogeneous esMCs (>90% CD14-positive) that did not require any additional purification steps were produced after 18.7 ± 7.7 days (mean ± SD, n = 19). Production continued for several months when growth factors were replaced, with a total yield of 3.4 × 105 ± 2.0 esMCs (mean ± SD, n = 9) per EB. Transcriptome analysis of the esMC and the esMDM revealed a distinct myeloid signature that correlated with primary adult blood–derived monocytes and spleen tissue samples but not with other tissue samples tested. We found that esMCs and esMDMs expressed well-defined markers of the mononuclear phagocyte system including PU-1, C/EBPα, EMR1, and EMR2, MPEG1, CD1c, CD4, CD18, CD32, CD33, CD68, cathepsins and serine carboxypeptidase. Finally, esMCs differentiated into functional macrophages that could endocytose acetylated low-density lipoprotein, phagocytose opsonized yeast particles, secrete specific cytokines in response to lipopolysaccharide, and be activated differentially with IFN-γ and IL-4.ConclusionsWe have developed a simple and efficient method for producing homogeneous populations of monocytes and macrophages from hES cells. esMCs have a myeloid signature and can differentiate into functional macrophages. The method should prove useful in answering experimental questions regarding monocyte and macrophage development and biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.