Rapid evolution of pest, pathogen, and wildlife populations can have undesirable effects, for example, when insects evolve resistance to pesticides or fishes evolve smaller body size in response to harvest. A destructive invasive species in the Laurentian Great Lakes, the sea lamprey (Petromyzon marinus) has been controlled with the pesticide 3-trifluoromethyl-4-nitrophenol (TFM) since the 1950s. We evaluated the likelihood of sea lamprey evolving resistance to TFM by (i) reviewing sea lamprey life history and control; (ii) identifying physiological and behavioural resistance strategies; (iii) estimating the strength of selection from TFM; (iv) assessing the timeline for evolution; and (v) analyzing historical toxicity data for evidence of resistance. The number of sea lamprey generations exposed to TFM was within the range observed for fish populations where rapid evolution has occurred. Mortality from TFM was estimated as 82%–90%, suggesting significant selective pressure. However, 57 years of toxicity data revealed no increase in lethal concentrations of TFM. Vigilance and the development of alternative controls are required to prevent this aquatic invasive species from evolving strategies to evade control.
The lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2',5-dichloro-4'-nitrosalicylanilide (niclosamide) are added to Great Lakes tributaries to target the sea lamprey, an invasive parasitic fish. This study examines the photochemical behavior of the lampricides in Carpenter Creek, Sullivan Creek, and the Manistique River. The observed loss of TFM in Carpenter and Sullivan Creeks (i.e., 34 and 19%) was similar to the loss of bromide in parallel time of passage studies (i.e., 30 and 29%), demonstrating that TFM photodegradation was minimal in both tributaries during the lampricide application. Furthermore, the absence of inorganic and organic photoproducts in the Manistique River demonstrates that TFM and niclosamide photodegradation was minimal in this large tributary, despite its long residence time (i.e., 3.3 days). Kinetic modeling was used to identify environmental variables primarily responsible for the limited photodegradation of TFM in the field compared to estimates from laboratory data. This analysis demonstrates that the lack of TFM photodegradation was attributable to the short residence times in Carpenter and Sullivan Creeks, while depth, time of year, time of day, and cloud cover influenced photochemical fate in the Manistique River. The modeling approach was extended to assess how many of the 140 United States tributaries treated with lampricides in 2015 and 2016 were amenable to TFM photolysis. While>50% removal of TFM due to photolysis could occur in 13 long and shallow tributaries, in most systems lampricides will reach the Great Lakes untransformed.
The plant growth regulator ethephon (2-chloroethylphosphonic acid) inhibits human butyrylcholinesterase (BChE) by making a covalent adduct on the active site serine 198. Our goal was to extend earlier studies on ethephon inhibition. Addition of freshly prepared ethephon to BChE in buffered medium, at pH 7.0 and 22 °C, resulted in no inhibition initially. However, inhibition developed progressively over 60 min of incubation. Preincubation of ethephon in pH 7-9 buffers increased its initial inhibitory potency. These observations indicated that ethephon itself was not the inhibitor. About 3% of the initial ethephon could be trapped as a BChE adduct. Mass spectral analysis of the active site peptide from inhibited BChE showed that the inhibitor added a mass of 108 Da to the active site serine on peptide FGES198AGAAS. This result rules out a previous hypothesis that ethephon adds HPO3 to BChE (added mass of 80 Da). To accommodate these observations, we propose that in aqueous media at neutral to slightly alkaline pH about 3% of the ethephon is converted (t1/2 = 9.9 h at pH 7.0) into a cyclic oxaphosphetane which is the actual BChE inhibitor forming the 2-hydroxyethylphosphonate adduct on BChE at Ser198 while about 97% of the ethephon breaks down to ethylene (t1/2 = 11-48 h at pH 7.0) which is responsible for plant growth regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.