Targeted deletion of the gene encoding the neuronal and neuroendocrine secreted polypeptide VGF (nonacronymic) produces a lean, hypermetabolic mouse. Consistent with this phenotype, VGF mRNA levels are regulated in the hypothalamic arcuate nucleus in response to fasting. To gain insight into the site(s) and mechanism(s) of action of VGF, we further characterized VGF expression in the hypothalamus. Double-label studies indicated that VGF and pro-opiomelanocortin were coexpressed in lateral arcuate neurons in the fed state, and that VGF expression was induced after fasting in medial arcuate neurons that synthesize neuropeptide Y (NPY). Like NPY, VGF mRNA induction in this region of the hypothalamus in fasted mice was inhibited by exogenous leptin. In leptin-deficient ob/ob and receptor-mutant db/db mice, VGF mRNA levels in the medial arcuate were elevated. To identify neural pathways that are functionally compromised by Vgf ablation, VGF mutant mice were crossed with obese A(y)/a (agouti) and ob/ob mice. VGF deficiency completely blocked the development of obesity in A(y)/a mice, whereas deletion of Vgf in ob/ob mice attenuated weight gain but had no impact on adiposity. Hypothalamic levels of NPY and agouti-related polypeptide mRNAs in both double-mutant lines were dramatically elevated 10- to 15-fold above those of wild-type mice. VGF-deficient mice were also found to resist diet- and gold thioglucose-induced obesity. These data and the susceptibility of VGF mutant mice to monosodium glutamate-induced obesity are consistent with a role for VGF in outflow pathways, downstream of hypothalamic and/or brainstem melanocortin 4 receptors, that project via the autonomic nervous system to peripheral metabolic tissues and regulate energy homeostasis.
Though discovered over 100 years ago, the molecular foundation of sporadic Alzheimer's disease (AD) remains elusive. To better characterize the complex nature of AD, we constructed multiscale causal networks on a large human AD multi-omics dataset, integrating clinical features of AD, DNA variation, and gene-and protein-expression. These probabilistic causal models enabled detection, prioritization and replication of high-confidence master regulators of AD-associated networks, including the top predicted regulator, VGF. Overexpression of neuropeptide precursor VGF in 5xFAD mice partially rescued beta-amyloid-mediated memory impairment and neuropathology. Molecular validation of network predictions downstream of VGF was also achieved in this AD model, with significant enrichment for homologous genes identified as differentially expressed in 5xFAD brains overexpressing VGF. Our findings support a causal role for VGF in protecting against AD pathogenesis and progression.
Brain-derived neurotrophic factor (BDNF) is a critical effector of depression-like behavior and antidepressant responses. Here, we show that VGF (non-acronymic), which is robustly regulated by BDNF/TrkB signaling, is downregulated in dorsal hippocampus (dHc) (male/female) and upregulated in nucleus accumbens (NAc) (male) in depressed human subjects and in mice subjected to chronic social defeat stress (CSDS). Adeno-associated virus (AAV)-Cre-mediated Vgf ablation in floxed VGF mice, in dHc or NAc, led to pro-depressant or antidepressant behaviors, respectively, while dHc or NAc AAV-VGF overexpression induced opposite outcomes. Mice with reduced VGF levels in the germline (Vgf+/−) or in dHc (AAV-Cre-injected floxed mice) showed increased susceptibility to CSDS and impaired responses to ketamine treatment in the forced swim test. Floxed mice with conditional pan-neuronal (Synapsin-Cre) but not those with forebrain (αCaMKII-Cre) Vgf ablation displayed increased susceptibility to subthreshold social defeat stress, suggesting that neuronal VGF, expressed in part in inhibitory interneurons, regulates depression-like behavior. Acute antibody-mediated sequestration of VGF-derived C-terminal peptides AQEE-30 and TLQP-62 in dHc induced pro-depressant effects. Conversely, dHc TLQP-62 infusion had rapid antidepressant efficacy, which was reduced in BDNF floxed mice injected in dHc with AAV-Cre, and in NBQX- and rapamycin-pretreated wildtype mice, these compounds blocking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and mammalian target of rapamycin (mTOR) signaling, respectively. VGF is therefore a critical modulator of depression-like behaviors in dHc and NAc. In hippocampus, the antidepressant response to ketamine is associated with rapid VGF translation, is impaired by reduced VGF expression, and as previously reported, requires coincident, rapid BDNF translation and release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.