On five commercial cattle rearing sites across Europe, a total of 802 young cattle at high risk of developing bovine respiratory disease (BRD) associated with the bacterial pathogens Mannheimia haemolytica or Pasteurella multocida and/or Mycoplasma bovis were enrolled into a multicentre, controlled field trial. Half were treated with a single dose of gamithromycin at 6 mg/kg bodyweight by subcutaneous injection and half received an injection of a saline placebo as the control. All animals were observed daily for 14 days for signs of BRD as defined by set criteria. The proportion of metaphylactic preventive treatment successes, defined as animals surviving to day 14 without signs of BRD, in the gamithromycin-treated group (86 per cent) was significantly (P=0.0012) higher than in the saline-treated controls (61 per cent). Morbidity among the treated animals was reduced by 64 per cent compared with the controls.
The efficacy of eprinomectin in an extended-release injection (ERI) formulation was evaluated against infections with third-stage larvae or eggs of gastrointestinal and pulmonary nematodes in cattle under 120-day natural challenge conditions in a series of five studies conducted in the USA (three studies) and in Europe (two studies). For each study, 30 nematode-free (four studies) or 30 cattle harboring naturally acquired nematode infections (one study) were included. The cattle were of various breeds or crosses, weighed 107.5-273 kg prior to treatment and aged approximately 4-11 months. For each study, animals were blocked based on pre-treatment bodyweight and then randomly allocated to treatment: ERI vehicle (control) at 1 mL/50 kg bodyweight or Eprinomectin 5% (w/v) ERI at 1 mL/50 kg bodyweight (1.0 mg eprinomectin/kg) for a total of 15 and 15 animals in each group. Treatments were administered once on Day 0 by subcutaneous injection in front of the shoulder. In each study, all animals grazed one naturally contaminated pasture for 120 days. At regular intervals during the studies, fecal samples from all cattle were examined for nematode egg and larval counts. In four studies pairs of tracer cattle were used to monitor pasture infectivity at 28-day intervals before and/or during the grazing period. All calves were weighed before turnout onto pasture and at regular intervals until housing on Day 120. For parasite recovery, all study animals were humanely euthanized 27-30 days after removal from pasture. Cattle treated with Eprinomectin ERI had significantly (p<0.05) fewer strongylid eggs (≤1 egg per gram; egg count reduction≥94%) than the control cattle and zero lungworm larvae at each post-treatment time point. At euthanasia, cattle treated with Eprinomectin ERI had significantly (p<0.05) fewer of the following nematodes than the ERI vehicle-treated (control) cattle with overall reduction of nematode counts by >92%: Dictyocaulus viviparus (adults and fourth-stage larvae (L4), Bunostomum phlebotomum, Cooperia curticei, Cooperia oncophora, Cooperia punctata, Cooperia surnabada, Cooperia spp. inhibited L4, Haemonchus contortus, Haemonchus placei, Haemonchus spp. inhibited L4, Nematodirus helvetianus, Nematodirus spp. inhibited L4, Oesophagostomum radiatum, Oesophagostomum spp. inhibited L4, Ostertagia leptospicularis, Ostertagia lyrata, Ostertagia ostertagi, Ostertagia spp. inhibited L4, Trichostrongylus axei, Trichostrongylus colubriformis, Trichostrongylus spp. inhibited L4, Trichuris discolor, and Trichuris ovis. Over the 120-day grazing period, Eprinomectin ERI-treated cattle gained between 4.8 kg and 31 kg more weight than the controls. This weight gain advantage was significant (p<0.05) in three studies. All animals accepted the treatment well. No adverse reaction to treatment was observed in any animal in any study.
A series of 10 dose confirmation studies was conducted to evaluate the persistent activity of an extended-release injectable (ERI) formulation of eprinomectin against single point challenge infections of gastrointestinal and pulmonary nematodes of cattle. The formulation, selected based on the optimal combination of high nematode efficacy, appropriate plasma profile, and satisfactory tissue residue levels, includes 5% poly(D,L-lactide-co-glycolic)acid (PLGA) and is designed to deliver eprinomectin at a dose of 1.0mg/kg bodyweight. Individual studies, included 16-30 cattle blocked based on pre-treatment bodyweight and randomly allocated to treatment with either ERI vehicle or saline (control), or the selected Eprinomectin ERI formulation. Treatments were administered once at a dose volume of 1 mL/50 kg bodyweight by subcutaneous injection in front of the shoulder. In each study, cattle were challenged with a combination of infective stages of gastrointestinal and/or pulmonary nematodes 100, 120 or 150 days after treatment and were processed for parasite recovery according to standard techniques 25-30 days after challenge. Based on parasite counts, Eprinomectin ERI (1mg eprinomectin/kg bodyweight) provided >90% efficacy (p<0.05) against challenge with Cooperia oncophora and Cooperia surnabada at 100 days after treatment; against challenge with Ostertagia ostertagi, Ostertagia lyrata, Ostertagia leptospicularis, Ostertagia circumcincta, Ostertagia trifurcata, Trichostrongylus axei, and Cooperia punctata at 120 days after treatment; and against challenge with Haemonchus contortus, Bunostomum phlebotomum, Oesophagostomum radiatum and Dictyocaulus viviparus at 150 days after treatment. Results of a study to evaluate eprinomectin plasma levels in cattle treated with the Eprinomectin ERI formulation reveal a characteristic second plasma concentration peak and a profile commensurate with the duration of efficacy. These results confirm that the Eprinomectin ERI formulation can provide high levels of parasite control against a range of nematodes of cattle for up to 5 months following a single treatment.
BackgroundThe studies reported here were conducted to assess the efficacy of ivermectin long-acting injection (IVM LAI; IVOMEC® GOLD, Merial; 3.15 % w/v ivermectin) for the treatment and control of natural infestations of cattle by Hypoderma bovis and Hypoderma lineatum, which are the most economically important oestrid flies of cattle in the northern hemisphere.MethodsCattle selected from herds with a history of Hypoderma infestation were grouped into blocks of three (Italy, 33 cattle; Germany, 30 cattle) or two (USA, 16 cattle) animals each, on the basis of positivity at the pre-treatment anti-Hypoderma antibody titres. Within each block, animals were randomly allocated to one of the following treatment regimens: saline (control); IVM LAI, administered at the predicted time of occurrence of first-instar larvae (Italy, Germany, USA); IVM LAI, administered at the predicted time of occurrence of second- and/or third-instar larvae (Italy, Germany). All treatments were administered by subcutaneous injection in correspondence of the area anterior to the shoulder at 1 ml/50 kg body weight, which corresponds to 630 mcg IVM/kg for IVM LAI.ResultsNo Hypoderma larvae emerged from animals treated with IVM LAI, whereas live H. lineatum (Italy) or H. bovis (Germany, USA) larvae were collected from saline-treated animals (P < 0.01). No adverse reactions to treatments were in any of the animals enrolled in the study.ConclusionsThe results from this study demonstrate that ivermectin in a long-acting formulation is 100 % efficacious in the treatment of cattle naturally infested by H. bovis and H. lineatum larvae at all stages of development. IVM LAI can, therefore, be used as ‘prophylactic’ treatment for Hypoderma spp. infestations in absence of external evidence of their presence and thus prior to skin and carcass damage, and as ‘therapeutic’ treatment, when warbles are already present.
Seven studies were conducted in commercial grazing operations to confirm anthelmintic efficacy, assess acceptability, and measure the productivity response of cattle to treatment with eprinomectin in an extended-release injectable formulation (ERI) when exposed to nematode infected pastures for 120 days. The studies were conducted under one protocol in the USA in seven locations (Arkansas, Idaho, Louisiana, Minnesota, Missouri, Oregon, and Wisconsin). Each study had 67-68 naturally infected animals for a total of 475 (226 female, 249 male castrate) Angus or beef-cross cattle. The animals weighed 133-335 kg prior to treatment and were approximately 3-12 months of age. The studies were conducted under a randomized block design based on pre-treatment body weights to sequentially form 17 replicates of four animals each within sex in each study. Animals within a replicate were randomly assigned to treatments, one to Eprinomectin ERI vehicle (control) and three to Eprinomectin ERI (5%, w/v eprinomectin). Treatments were administered at 1 mL/50 kg body weight once subcutaneously anterior to the shoulder. All animals in each study grazed one pasture throughout the observation period of 120 days. Cattle were weighed and fecal samples collected pre-treatment and on 28, 56, 84, and 120 days after treatment for fecal egg and lungworm larval counts. Positive fecal samples generally were cultured en masse to determine the nematode genera attributable to the gastrointestinal helminth infection. Bunostomum, Cooperia, Haemonchus, Nematodirus, Oesophagostomum, Ostertagia, and Trichostrongylus, when present, were referred to as strongylids. At all post-treatment sampling intervals, Eprinomectin ERI-treated cattle had significantly (P<0.05) lower strongylid egg counts than vehicle-treated controls, with ≥95% reduction after 120 days of grazing. Over this same period, Eprinomectin ERI-treated cattle gained more weight (43.9 lb/head) than vehicle-treated controls in all studies. This weight gain advantage was significant (P<0.05) in six of the studies with the Eprinomectin ERI-treated cattle gaining an average of 42.8% and the control cattle gaining 33.1% of their initial weight. No adverse reactions were observed in the treated animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.