Purpose HER2-positive breast cancer is heterogeneous. Some tumors express mutations, like activating PIK3CA mutations or reduced PTEN expression, that negatively correlate with response to HER2-targeted therapies. In this exploratory analysis, we investigated whether the efficacy of trastuzumab emtansine (T-DM1), an antibody–drug conjugate comprised of the cytotoxic agent DM1 linked to the HER2-targeted antibody trastuzumab, was correlated with the expression of specific biomarkers in the phase III EMILIA study. Experimental Design Tumors were evaluated for HER2 (n = 866), EGFR (n = 832), and HER3 (n = 860) mRNA expression by quantitative reverse transcriptase PCR; for PTEN protein expression (n = 271) by IHC; and for PIK3CA mutations (n = 259) using a mutation detection kit. Survival outcomes were analyzed by biomarker subgroups. T-DM1 was also tested on cell lines and in breast cancer xenograft models containing PIK3CA mutations. Results Longer progression-free survival (PFS) and overall survival (OS) were observed with T-DM1 compared with capecitabine plus lapatinib in all biomarker subgroups. PIK3CA mutations were associated with shorter median PFS (mutant vs. wild type: 4.3 vs. 6.4 months) and OS (17.3 vs. 27.8 months) in capecitabine plus lapatinib–treated patients, but not in T-DM1-treated patients (PFS, 10.9 vs. 9.8 months; OS, not reached in mutant or wild type). T-DM1 showed potent activity in cell lines and xenograft models with PIK3CA mutations. Conclusions Although other standard HER2-directed therapies are less effective in tumors with PI3KCA mutations, T-DM1 appears to be effective in both PI3KCA-mutated and wild-type tumors.
Purpose: Trastuzumab-emtansine (T-DM1) is an antibodydrug conjugate (ADC) comprising the cytotoxic agent DM1 conjugated to trastuzumab with a stable linker. Thrombocytopenia was the dose-limiting toxicity in the phase I study, and grade !3 thrombocytopenia occurred in up to 13% of patients receiving T-DM1 in phase III studies. We investigated the mechanism of T-DM1-induced thrombocytopenia.Experimental Design: The effect of T-DM1 on platelet function was measured by aggregometry, and by flow cytometry to detect the markers of activation. The effect of T-DM1 on differentiation and maturation of megakaryocytes (MK) from human hematopoietic stem cells was assessed by flow cytometry and microscopy. Binding, uptake, and catabolism of T-DM1 in MKs, were assessed by various techniques including fluorescence microscopy, scintigraphy to detect T- [H 3 ]-DM1 and 125 I-T-DM1, and mass spectrometry. The role of FcgRIIa was assessed using blocking antibodies and mutant constructs of trastuzumab that do not bind FcgR.Results: T-DM1 had no direct effect on platelet activation and aggregation, but it did markedly inhibit MK differentiation via a cytotoxic effect. Inhibition occurred with DM1-containing ADCs but not with trastuzumab demonstrating a role for DM1. MKs internalized these ADCs in a HER2-independent, FcgRIIa-dependent manner, resulting in intracellular release of DM1. Binding and internalization of T-DM1 diminished as MKs matured; however, prolonged exposure of mature MKs to T-DM1 resulted in a disrupted cytoskeletal structure.Conclusions: These data support the hypothesis that T-DM1-induced thrombocytopenia is mediated in large part by DM1-induced impairment of MK differentiation, with a less pronounced effect on mature MKs.
The applicability of circulating tumor DNA (ctDNA) genotyping to inform enrollment of patients with cancer in clinical trials has not been established. We conducted a phase 2 trial to evaluate the efficacy of pertuzumab plus trastuzumab for metastatic colorectal cancer (mCRC), with human epidermal growth factor receptor 2 (HER2) amplification prospectively confirmed by tumor tissue or ctDNA analysis (UMIN000027887). HER2 amplification was confirmed in tissue and/or ctDNA in 30 patients with mCRC. The study met the primary endpoint with a confirmed objective response rate of 30% in 27 tissue-positive patients and 28% in 25 ctDNA-positive patients, as compared to an objective response rate of 0% in a matched real-world reference population treated with standard-of-care salvage therapy. Post hoc exploratory analyses revealed that baseline ctDNA genotyping of HER2 copy number and concurrent oncogenic alterations adjusted for tumor fraction stratified patients according to efficacy with similar accuracy to tissue genotyping. Decreased ctDNA fraction 3 weeks after treatment initiation associated with therapeutic response. Pertuzumab plus trastuzumab showed similar efficacy in patients with mCRC with HER2 amplification in tissue or ctDNA, showing that ctDNA genotyping can identify patients who benefit from dual-HER2 blockade as well as monitor treatment response. These findings warrant further use of ctDNA genotyping in clinical trials for HER2-amplified mCRC, which might especially benefit patients in first-line treatment.
Our objective in this prospective study was to determine the natural course of Brucella abortus infection in cohorts of seropositive and seronegative, female bison (Bison bison) and their offspring in Yellowstone National Park (YNP) for 5 yr. We collected specimens from 53 adult females and 25 calves at least once and from 45 adults and 22 calves more than once. Annual seroconversion rates (negative to positive) were relatively high (23% for calves and juvenile bison, 6% in the total sample of adult female bison in our study, and 11% in the adult females that began the study as seronegatives). Antibody was not protective against infection, even for calves that passively received antibody from an infected mother's colostrum. Antibody levels stayed remarkably constant, with only a slow decline over time. We found only two seroconversions from a weak positive status to negative. Infected bison aborted and shed viable bacteria. Risk of shedding infective Brucella was highest for bison in the 2 yr following seroconversion from negative to positive. In one bison, we detected shedding for 3 yr following seroconversion. Regardless of serostatus of dams and neonates, most calves were seronegative by 5 mo of age. There was no relationship between the antibody status of the dam and the tendency of a calf to seroconvert to positive during the duration of the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.