We have characterized a phosphoserine binding domain in the coactivator CREB-binding protein (CBP) which interacts with the protein kinase A-phosphorylated, and hence activated, form of the cyclic AMP-responsive factor CREB. The CREB binding domain, referred to as KIX, is alpha helical and binds to an unstructured kinase-inducible domain in CREB following phosphorylation of CREB at Ser-133. Phospho-Ser-133 forms direct contacts with residues in KIX, and these contacts are further stabilized by hydrophobic residues in the kinase-inducible domain which flank phospho-Ser-133. Like the src homology 2 (SH2) domains which bind phosphotyrosine-containing peptides, phosphoserine 133 appears to coordinate with a single arginine residue (Arg-600) in KIX which is conserved in the CBP-related protein P300. Since mutagenesis of Arg-600 to Gln severely reduces CREB-CBP complex formation, our results demonstrate that, as in the case of tyrosine kinase pathways, signal transduction through serine/threonine kinase pathways may also require protein interaction motifs which are capable of recognizing phosphorylated amino acids.
Predictive methods, physicochemical measurements, and structure activity relationship studies suggest that corticotropin-releasing factor (CRF; corticoliberin), its family members, and competitive antagonists (resulting from N-terminal deletions) usually assume an a-helical conformation when interacting with the CRF receptor(s). To test this hypothesis further, we have scanned the whole sequence of the CRF antagonist Nle21'38]r/hCRF-(12-41) (r/hCRF, rat/human CRF; Nle, norleucine) with an i-(i + 3) bridge consisting of the Giu-Xaa-Xa:-Lys scaffold. We have found astressin {cyclo (30)(31)(32)(33) Nle2l,38,Glu30,Lys33] Corticotropin-releasing factor (CRF; corticoliberin) is a 41-residue peptide amide which stimulates the release of corticotropin (ACTH) (1, 2) and acts within the brain to mediate a wide range of stress responses (3). The actions of CRF are mediated through binding to CRF receptors, several of which have been characterized recently (4-10). These receptors, like those for growth hormone-releasing factor, calcitonin, and vasoactive intestinal peptide, are coupled via G proteins and have seven putative transmembrane domains. The actions of CRF can also be modulated by a 37-kDa CRF-binding protein (CRF-BP) (11). To probe the physiological role of CRF, we have developed competitive antagonists that are particularly potent when administered in the central nervous system; however, these same analogs bind pituitary receptors with lower affinity than does CRF, and their peripheral administration results in weak and short-lived effects in vivo (12). Synthetic CRF antagonists such as the a-helical CRF-(9-41)
We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2). Additionally, we introduced deletions and substitutions known to increase duration of action to yield antagonists such as cyclo(31-34)[DPhe(11),His(12),C(alpha)MeLeu(13,39),Nle(17),Glu(31),Lys(34)]Ac-sauvagine((8-40)) (astressin(2)-B) with CRF(2) selectivities greater than 100-fold. CRF receptor autoradiography was performed in rat tissue known to express CRF(2) and CRF(1) in order to confirm that astressin(2)-B could indeed bind to established CRF(2) but not CRF(1) receptor-expressing tissues. Extended duration of action of astressin(2)-B vs that of antisauvagine-30 is demonstrated in the CRF(2)-mediated animal model whereby the inhibition of gastric emptying of a solid meal in mice by urocortin administered intraperitoneally at time zero is antagonized by the administration of astressin(2)-B but not by antisauvagine-30 at times -3 and -6 h while both peptides are effective when given 10 min before urocortin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.