Background & Aims-The ability to obtain unlimited numbers of human hepatocytes would improve development of cell-based therapies for liver diseases, facilitate the study of liver biology and improve the early stages of drug discovery. Embryonic stem cells are pluripotent, can potentially differentiate into any cell type and could therefore be developed as a source of human hepatocytes.
Acinetobacter baumannii is an emerging bacterial pathogen of considerable health care concern. Nonetheless, relatively little is known about the organism's virulence factors or their regulatory networks. Septicemia and ventilator-associated pneumonia are two of the more severe forms of A. baumannii disease. To identify virulence factors that may contribute to these disease processes, genetically diverse A. baumannii clinical isolates were evaluated for the ability to proliferate in human serum. A transposon mutant library was created in a strain background that propagated well in serum and screened for members with decreased serum growth. The results revealed that disruption of A. baumannii phospholipase D (PLD) caused a reduction in the organism's ability to thrive in serum, a deficiency in epithelial cell invasion, and diminished pathogenesis in a murine model of pneumonia. Collectively, these results suggest that PLD is an A. baumannii virulence factor.
Insulin-dependent (type 1) diabetes mellitus (T1D) onset is mediated by individual human genetics as well as undefined environmental influences such as viral infections. The group B coxsackieviruses (CVB) are commonly named as putative T1D-inducing agents. We studied CVB replication in nonobese diabetic (NOD) mice to assess how infection by diverse CVB strains affected T1D incidence in a model of human T1D. Inoculation of 4-or 8-week-old NOD mice with any of nine different CVB strains significantly reduced the incidence of T1D by 2-to 10-fold over a 10-month period relative to T1D incidences in mock-infected control mice. Greater protection was conferred by more-pathogenic CVB strains relative to less-virulent or avirulent strains. Two CVB3 strains were employed to further explore the relationship of CVB virulence phenotypes to T1D onset and incidence: a pathogenic strain (CVB3/M) and a nonvirulent strain (CVB3/GA). CVB3/M replicated to four-to fivefold-higher titers than CVB3/GA in the pancreas and induced widespread pancreatitis, whereas CVB3/GA induced no pancreatitis. Apoptotic nuclei were detected by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay in CVB3/M-infected pancreata but not in CVB3/GA-infected pancreata. In situ hybridization detected CVB3 RNA in acinar tissue but not in pancreatic islets. Although islets demonstrated inflammatory infiltrates in CVB3-protected mice, insulin remained detectable by immunohistochemistry in these islets but not in those from diabetic mice. Enzyme-linked immunosorbent assay-based examination of murine sera for immunoglobulin G1 (IgG1) and IgG2a immunoreactivity against diabetic autoantigens insulin and HSP60 revealed no statistically significant relationship between CVB3-protected mice or diabetic mice and specific autoimmunity. However, when pooled sera from CVB3/M-protected mice were used to probe a Western blot of pancreatic proteins, numerous proteins were detected, whereas only one band was detected by sera from CVB3/GA-protected mice. No proteins were detected by sera from diabetic or normal mice. Cumulatively, these data do not support the hypothesis that CVB are causative agents of T1D. To the contrary, CVB infections provide significant protection from T1D onset in NOD mice. Possible mechanisms by which this virus-induced protection may occur are discussed.The group B coxsackieviruses (CVB; family Picornaviridae, genus Enterovirus, species group B coxsackievirus; six serotypes, CVB1 to -6) are among the best studied of human enteroviruses (102). The CVB genome is a single strand of positive sense RNA 7,400 nucleotides in length that encodes 11 proteins in a single open reading frame (89). The CVB have been associated with diverse human diseases, among the more serious of which are myocarditis, pancreatitis, and aseptic meningitis. The CVB have been soundly implicated as causes of human myocarditis (1, 26, 42, 60-62, 73, 74, 108, 109) and pancreatitis (2,41,54,58,66,107) and, furthermore, cause these diseases readily i...
Group B coxsackieviruses (CVB) are believed to trigger some cases of human type 1 diabetes (T1D), although the mechanism by which this may occur has not been shown. We demonstrated previously that inoculation of young nonobese diabetic (NOD) mice with any of several different CVB strains reduced T1D incidence. We also observed no evidence of CVB replication within islets of young NOD mice, suggesting no role for CVB in T1D induction in the NOD mouse model. The failure to observe CVB replication within islets of young NOD mice has been proposed to be due to interferon expression by insulin-producing beta cells or lack of expression of the CVB receptor CAR. We found that CAR protein is detectable within islets of young and older NOD mice and that a CVB3 strain, which expresses murine IL-4, can replicate in islets. Mice inoculated with the IL-4 expressing CVB3 chimeric strain were better protected from T1D onset than were mock-infected control mice despite intraislet viral replication. Having demonstrated that CVB can replicate in healthy islets of young NOD mice when the intraislet environment is suitably altered, we asked whether islets in old prediabetic mice were resistant to CVB infection. Unlike young mice in which insulitis is not yet apparent, older NOD mice demonstrate severe insulitis in all islets. Inoculating older prediabetic mice with different pathogenic CVB strains caused accelerated T1D onset relative to control mice, a phenomenon that was preceded by detection of virus within islets. Together, the results suggest a model for resolving conflicting data regarding the role of CVB in human T1D etiology.
The coxsackievirus and adenovirus receptor (CAR) has been identified as the cellular receptor for group B coxsackieviruses, including serotype 3 (CVB3). CAR mediates infection by binding to CVB3 and catalyzing conformational changes in the virus that result in formation of the altered, noninfectious A-particle. Kinetic analyses show that the apparent first-order rate constant for the inactivation of CVB3 by soluble CAR (sCAR) at physiological temperatures varies nonlinearly with sCAR concentration. Cryo-electron microscopy (cryo-EM) reconstruction of the CVB3-CAR complex resulted in a 9.0-Å resolution map that was interpreted with the four available crystal structures of CAR, providing a consensus footprint for the receptor binding site. The analysis of the cryo-EM structure identifies important virus-receptor interactions that are conserved across picornavirus species. These conserved interactions map to variable antigenic sites or structurally conserved regions, suggesting a combination of evolutionary mechanisms for receptor site preservation. The CAR-catalyzed A-particle structure was solved to a 6.6-Å resolution and shows significant rearrangement of internal features and symmetric interactions with the RNA genome. IMPORTANCEThis report presents new information about receptor use by picornaviruses and highlights the importance of attaining at least an ϳ9-Å resolution for the interpretation of cryo-EM complex maps. The analysis of receptor binding elucidates two complementary mechanisms for preservation of the low-affinity (initial) interaction of the receptor and defines the kinetics of receptor-catalyzed conformational change to the A-particle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.