SUMMARY
Activated T cells engage aerobic glycolysis and anabolic metabolism for growth, proliferation, and effector functions. We propose that a glucose-poor tumor microenvironment limits aerobic glycolysis in tumor-infiltrating T cells, which suppresses tumoricidal effector functions. We discovered a new role for the glycolytic metabolite phosphoenolpyruvate (PEP) in sustaining T cell receptor-mediated Ca2+-NFAT signaling and effector functions by repressing sarco/ER Ca2+-ATPase (SERCA) activity. Tumor-specific CD4 and CD8 T cells could be metabolically reprogrammed by increasing PEP production through overexpression of phosphoenolpyruvate carboxykinase 1 (PCK1), which bolstered effector functions. Moreover, PCK1-overexpressing T cells restricted tumor growth and prolonged the survival of melanoma-bearing mice. This study uncovers new metabolic checkpoints for T cell activity and demonstrates that metabolic reprogramming of tumor-reactive T cells can enhance anti-tumor T cell responses, illuminating new forms of immunotherapy.
Somatic hypermutation introduces point mutations into immunoglobulin genes in germinal centre B cells during an immune response. The reaction is initiated by cytosine deamination by the activation-induced deaminase (AID) and completed by error-prone processing of the resulting uracils by mismatch and base excision repair factors. Somatic hypermutation represents a threat to genome integrity and it is not known how the B cell genome is protected from the mutagenic effects of somatic hypermutation nor how often these protective mechanisms fail. Here we show, by extensive sequencing of murine B cell genes, that the genome is protected by two distinct mechanisms: selective targeting of AID and gene-specific, high-fidelity repair of AID-generated uracils. Numerous genes linked to B cell tumorigenesis, including Myc, Pim1, Pax5, Ocab (also called Pou2af1), H2afx, Rhoh and Ebf1, are deaminated by AID but escape acquisition of most mutations through the combined action of mismatch and base excision repair. However, approximately 25% of expressed genes analysed were not fully protected by either mechanism and accumulated mutations in germinal centre B cells. Our results demonstrate that AID acts broadly on the genome, with the ultimate distribution of mutations determined by a balance between high-fidelity and error-prone DNA repair.
Summary
We identify the interfollicular (IF) zone as the site where germinal center B cell and T follicular helper (Tfh) cell differentiation initiates. For the first two days post-immunization, antigen-specific T and B cells remained confined within the IF zone, formed long-lived interactions, and upregulated the transcriptional repressor Bcl6. T cells also acquired the Tfh cell markers CXCR5, PD-1 and GL7. Responding B and T cells migrated to the follicle interior directly from the IF zone, T cell immigration preceding B cells by one day. Notably, in the absence of cognate B cells, Tfh cells still formed and migrated to the follicle. However, without such B cells, PD-1, ICOS and GL7 were no longer expressed on follicular Bcl6hi T cells that nevertheless persisted in the follicle. Thus, Ag-specific B cells are required for the maintenance of the PD-1hi ICOShi GL7hi Tfh cell phenotype within the follicle, but not for their initial differentiation in the IF zone.
Memory B cells (MBCs) are long-lived sources of rapid, isotype-switched secondary antibody-forming cell (AFC) responses. Whether MBCs homogeneously retain the ability to self-renew and terminally differentiate or if these functions are compartmentalized into MBC subsets has been unclear. It was previously suggested that antibody isotype controls MBC differentiation upon restimulation. Here we demonstrate that subdividing MBCs based on expression of CD80 and PD-L2, independent of isotype, identified MBC subsets with distinct functional behaviors upon rechallenge. CD80+PD-L2+ MBCs differentiated rapidly into AFCs but did not generate germinal centers (GCs); conversely CD80−PD-L2− MBCs generated few early AFCs but robustly seeded GCs. Gene expression patterns of subsets support both the identity and function of these distinct MBC types. Hence, MBC differentiation and regeneration are compartmentalized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.