ATP13A2 (PARK9) is a late endo-lysosomal transporter of unknown function that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome, a parkinsonism with dementia 1 and early-onset Parkinson's disease (PD) 2. ATP13A2 offers protection against genetic and environmental risk factors of PD, whereas loss of ATP13A2 compromises lysosomal function 3. The lysosomal transport function of ATP13A2 remained unclear, but here, we establish ATP13A2 as a lysosomal polyamine exporter with highest affinity for spermine. Polyamines stimulate the activity of purified ATP13A2, while disease mutants are functionally impaired to a degree that correlates with the disease phenotype. ATP13A2 promotes cellular polyamine uptake via endocytosis and transports polyamines into the cytosol, which highlights a role for endo-lysosomes in cellular polyamine uptake. At high concentrations, polyamines induce cell toxicity, which is exacerbated by ATP13A2 loss due to lysosomal dysfunction, lysosomal rupture and cathepsin B activation. This phenotype is recapitulated in neurons and nematodes with loss of ATP13A2 or its orthologues. Thus, defective lysosomal polyamine export is a new mechanism for lysosome-dependent cell death that may be implicated in neurodegeneration. Our findings further shed light on the molecular identity of the elusive mammalian polyamine transport system. ATP13A2 is a P5B-ATPase belonging to the family of P-type ATPases, which couple ATP hydrolysis to substrate transport while transiently forming a catalytic phospho-intermediate 4. ATP13A2 is generally described as a heavy metal transporter 5 , but Ca 2+ 6 and the polyamine spermidine (SPD) 7,8 were also proposed. To screen for the transported substrate(s) of ATP13A2, we measured ATPase activity in the presence of various candidate substrates in solubilized microsomal membrane fractions of SH-SY5Y cells that overexpress human ATP13A2 wild type (WT) (WT-OE) or comparable levels of the catalytically dead D508N mutant (D508N-OE) 9,10. ATPase activity of ATP13A2 WT was significantly stimulated by the polyamines SPD and spermine (SPM) (Fig. 1a), whereas SPM had no effect on the D508N mutant (Extended Data Fig. 1a). MnCl2, ZnCl2, FeCl3, CaCl2, diamines, monoamines and amino acids exerted no effect (Extended Data Fig. 1a-3 d). The polyamines SPM, N 1-acetylspermine and SPD were able to stimulate ATPase activity in a concentration-dependent manner (Fig. 1b, Extended Data Fig. 1e) with the highest apparent affinity for SPM (Extended Data Table 1). The catalytic auto-phosphorylation and/or dephosphorylation reactions of P-type ATPases occur in response to binding of the transported substrate 4. ATP13A2 forms a phospho-intermediate on the D508 residue in the absence of SPM supplementation 9,10 , whereas SPM leads to a dose-dependent reduction in ATP13A2 phospho-enzyme levels (Fig. 1c), which is not seen with ornithine (Extended Data Fig. 1f). The dephosphorylation rate following a chase with non-radioactive ATP increased in the presence of...
Rhomboids are intramembrane proteases that use a catalytic dyad of serine and histidine for proteolysis. They are conserved in both prokaryotes and eukaryotes and regulate cellular processes as diverse as intercellular signalling, parasitic invasion of host cells, and mitochondrial morphology. Their widespread biological significance and consequent medical potential provides a strong incentive to understand the mechanism of these unusual enzymes for identification of specific inhibitors. In this study, we describe the structure of Escherichia coli rhomboid GlpG covalently bound to a mechanism-based isocoumarin inhibitor. We identify the position of the oxyanion hole, and the S 1 -and S 2 0 -binding subsites of GlpG, which are the key determinants of substrate specificity. The inhibitor-bound structure suggests that subtle structural change is sufficient for catalysis, as opposed to large changes proposed from previous structures of unliganded GlpG. Using bound inhibitor as a template, we present a model for substrate binding at the active site and biochemically test its validity. This study provides a foundation for a structural explanation of rhomboid specificity and mechanism, and for inhibitor design.
The major histocompatibility complex (MHC) class II–associated invariant chain (Ii) regulates intracellular trafficking and peptide loading of MHC class II molecules. Such loading occurs after endosomal degradation of the invariant chain to a ∼3-kD peptide termed CLIP (class II–associated invariant chain peptide). Cathepsins L and S have both been implicated in degradation of Ii to CLIP in thymus and peripheral lymphoid organs, respectively. However, macrophages from mice deficient in both cathepsins S and L can process Ii and load peptides onto MHC class II dimers normally. Both processes are blocked by a cysteine protease inhibitor, indicating the involvement of an additional Ii-processing enzyme(s). Comparison of cysteine proteases expressed by macrophages with those found in splenocytes and dendritic cells revealed two enzymes expressed exclusively in macrophages, cathepsins Z and F. Recombinant cathepsin Z did not generate CLIP from Ii–MHC class II complexes, whereas cathepsin F was as efficient as cathepsin S in CLIP generation. Inhibition of cathepsin F activity and MHC class II peptide loading by macrophages exhibited similar specificity and activity profiles. These experiments show that cathepsin F, in a subset of antigen presenting cells (APCs), can efficiently degrade Ii. Different APCs can thus use distinct proteases to mediate MHC class II maturation and peptide loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.