Autophagy allows cell survival during starvation through the bulk degradation of proteins and organelles by lysosomal enzymes. However, the mechanisms responsible for the induction and regulation of the autophagy program are poorly understood. Here we show that the FoxO3 transcription factor, which plays a critical role in muscle atrophy, is necessary and sufficient for the induction of autophagy in skeletal muscle in vivo. Akt/PKB activation blocks FoxO3 activation and autophagy, and this effect is not prevented by rapamycin. FoxO3 controls the transcription of autophagy-related genes, including LC3 and Bnip3, and Bnip3 appears to mediate the effect of FoxO3 on autophagy. This effect is not prevented by proteasome inhibitors. Thus, FoxO3 controls the two major systems of protein breakdown in skeletal muscle, the ubiquitin-proteasomal and autophagic/lysosomal pathways, independently. These findings point to FoxO3 and Bnip3 as potential therapeutic targets in muscle wasting disorders and other degenerative and neoplastic diseases in which autophagy is involved.
Formation of neuromuscular synapses requires a series of inductive interactions between growing motor axons and differentiating muscle cells, culminating in the precise juxtaposition of a highly specialized nerve terminal with a complex molecular structure on the postsynaptic muscle surface. The receptors and signaling pathways mediating these inductive interactions are not known. We have generated mice with a targeted disruption of the gene encoding MuSK, a receptor tyrosine kinase selectively localized to the postsynaptic muscle surface. Neuromuscular synapses do not form in these mice, suggesting a failure in the induction of synapse formation. Together with the results of an accompanying manuscript, our findings indicate that MuSK responds to a critical nerve-derived signal (agrin), and in turn activates signaling cascades responsible for all aspects of synapse formation, including organization of the postsynaptic membrane, synapse-specific transcription, and presynaptic differentiation.
SUMMARY Neuromuscular synapse formation requires a complex exchange of signals between motor neurons and skeletal muscle fibers, leading to the accumulation of postsynaptic proteins, including acetylcholine receptors in the muscle membrane and specialized release sites, or active zones in the presynaptic nerve terminal. MuSK, a receptor tyrosine kinase that is expressed in skeletal muscle, and Agrin, a motor neuron-derived ligand that stimulates MuSK phosphorylation, play critical roles in synaptic differentiation, as synapses do not form in their absence, and mutations in MuSK or downstream effectors are a major cause of a group of neuromuscular disorders, termed congenital myasthenic syndromes (CMS). How Agrin activates MuSK and stimulates synaptic differentiation is not known and remains a fundamental gap in our understanding of signaling at neuromuscular synapses. Here, we report that Lrp4, a member of the LDLR family, is a receptor for Agrin, forms a complex with MuSK and mediates MuSK activation by Agrin.
Formation of th neuromuscular junction depends upon reciprocal inductive interactions between the developing nerve and muscle, resulting in the precise juxtaposition of a differentiated nerve terminal with a highly specialized patch on the muscle membrane, termed the motor endplate. Agrin is a nerve-derived factor that can induced molecular reorganizations at the motor endplate, but the mechanism of action of agrin remains poorly understood. MuSK is a receptor tyrosine kinase localized to the motor endplate, seemingly well positioned to receive a key nerve-derived signal. Mice lacking either agrin or MuSK have recently been generated and exhibit similarly profound defects in their neuromuscular junctions. Here we demonstrate that agrin acts via a receptor complex that includes MuSK as well as a myotube-specific accessory component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.