The proinflammatory cytokine interleukin-1beta (IL-1beta) is a secreted protein that lacks a signal peptide and does not follow currently known pathways of secretion. Its efficient release from activated immune cells requires a secondary stimulus such as extracellular ATP acting on P2X(7) receptors. We show that human THP-1 monocytes shed microvesicles from their plasma membrane within 2-5 s of activation of P2X(7) receptors. Two minutes after such stimulation, the released microvesicles contained bioactive IL-1beta, which only later appeared in the vesicle-free supernatant. We conclude that microvesicle shedding is a major secretory pathway for rapid IL-1beta release from activated monocytes and may represent a more general mechanism for secretion of similar leaderless secretory proteins.
Interleukin-1 (IL-1) interacts with cells through two types of binding molecules, IL-1 type I receptor (IL-1R I) and IL-1R II. The function of IL-1R II is unknown. In studies using monoclonal antibodies, IL-1 prolonged the in vitro survival of polymorphonuclear cells (PMN) through IL-1R I, and IL-4 antagonized the action of IL-1 by inducing expression and release of IL-1R II. Dexamethasone also induced expression and release of the IL-1R II in PMN. These results, together with the effect of antibodies to IL-1R on IL-1-induced production of cytokines in monocytes, indicate that IL-1 acts on myelomonocytic cells through IL-1R I and that IL-1R II inhibits IL-1 activity by acting as a decoy target for IL-1. The existence of multiple pathways of regulation emphasizes the need for tight control of IL-1 action.
A number of pathogens induce immature dendritic cells (iDC) to migrate to lymphoid organs where, as mature DC (mDC), they serve as efficient APC. We hypothesized that pathogen recognition by iDC is mediated by Toll-like receptors (TLRs), and asked which TLRs are expressed during the progression of monocytes to mDC. We first measured mRNA levels for TLRs 1–5 and MD2 (a protein required for TLR4 function) by Northern analysis. For most TLRs, message expression decreased severalfold as monocytes differentiated into iDC, but opposing this trend, TLR3 and MD2 showed marked increases during iDC formation. When iDC were induced to mature with LPS or TNF-α, expression of most TLRs transiently increased and then nearly disappeared. Stimulation of iDC, but not mDC, with LPS resulted in the activation of IL-1 receptor-associated kinase, an early component in the TLR signaling pathway, strongly suggesting that LPS signals through a TLR. Surface expression of TLRs 1 and 4, as measured by mAb binding, was very low, corresponding to a few thousand molecules per cell in monocytes, and a few hundred or less in iDC. We conclude that TLRs are expressed in iDC and are involved in responses to at least one pathogen-derived substance, LPS. If TLR4 is solely responsible for LPS signaling in humans, as it is in mice, then its extremely low surface expression implies that it is a very efficient signal transducer in iDC.
Poxviruses employ many strategies to evade and neutralize the host immune response. In this study, we have identified two vaccinia virus ORFs, termed A46R and A52R, that share amino acid sequence similarity with the Toll͞IL-1 receptor (TIR) domain, a motif that defines the IL-1͞Toll-like receptor (TLR) superfamily of receptors, which have a key role in innate immunity and inflammation. When expressed in mammalian cells, the protein products of both ORFs were shown to interfere specifically with IL-1 signal transduction. A46R partially inhibited IL-1-mediated activation of the transcription factor NF B, and A52R potently blocked both IL-1-and TLR4-mediated NF B activation. MyD88 is a TIR domaincontaining adapter molecule known to have a central role in both IL-1 and TLR4 signaling. A52R mimicked the dominant-negative effect of a truncated version of MyD88 on IL-1, TLR4, and IL-18 signaling but had no effect on MyD88-independent signaling pathways. Therefore, A46R and A52R are likely to represent a mechanism used by vaccinia virus of suppressing TIR domaindependent intracellular signaling.
Leukocyte responsiveness to LPS is dependent upon CD14 and receptors of the Toll-like receptor (TLR) family. Neutrophils respond to LPS, but conflicting data exist regarding LPS responses of eosinophils and basophils, and expression of TLRs at the protein level in these granulocyte lineages has not been fully described. We examined the expression of TLR2, TLR4, and CD14 and found that monocytes expressed relatively high levels of cell surface TLR2, TLR4, and CD14, while neutrophils also expressed all three molecules, but at low levels. In contrast, basophils expressed TLR2 and TLR4 but not CD14, while eosinophils expressed none of these proteins. Tested in a range of functional assays including L-selectin shedding, CD11b up-regulation, IL-8 mRNA generation, and cell survival, neutrophils responded to LPS, but eosinophils and basophils did not. In contrast to previous data, we found, using monocyte depletion by negative magnetic selection, that neutrophil responses to LPS were heavily dependent upon the presence of a very low level of monocytes, and neutrophil survival induced by LPS at 22 h was monocyte dependent. We conclude that LPS has little role in the regulation of peripheral blood eosinophil and basophil function, and that, even in neutrophils, monocytes orchestrate many previously observed leukocyte LPS response patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.