Diabetic nephropathy (DN) is one of the specific complications of diabetes mellitus and one of the leading kidney-related disorders, often requiring renal replacement therapy. Currently, the tests commonly used for the diagnosis of DN, albuminuria (AU) and glomerular filtration rate (GFR), have limited sensitivity and specificity and can usually be noted when typical morphological changes in the kidney have already been manifested. That is why the extreme urgency of the problem of early diagnosis of this disease exists. The untargeted metabolomics analysis of blood plasma samples from 80 patients with type 1 diabetes and early and late stages of DN according to GFR was performed using direct injection mass spectrometry and bioinformatics analysis for diagnosing signatures construction. Among the dysregulated metabolites, combinations of 15 compounds, including amino acids and derivatives, monosaccharides, organic acids, and uremic toxins were selected for signatures for DN diagnosis. The selected metabolite combinations have shown high performance for diagnosing of DN, especially for the late stage (up to 99%). Despite the metabolite signature determined for the early stage of DN being characterized by a diagnostic performance of 81%, these metabolites as potential biomarkers might be useful in the evaluation of treatment of the disease, especially at early stages that may reduce the risk of kidney failure development.
A laboratory-developed test (LDT) is a type of in vitro diagnostic test that is designed, manufactured and used in the same laboratory (i.e., an in-house test). In this study, a metabolomics-based LDT was developed. This test involves a blood plasma preparation, direct-infusion mass spectrometry analysis with a high-resolution mass spectrometer, alignment and normalization of mass peaks using original algorithms, metabolite annotation by a biochemical context-driven algorithm, detection of overrepresented metabolic pathways and results in a visualization in the form of a pathway names cloud. The LDT was applied to detect early stage Parkinson’s disease (PD)—the diagnosis of which currently requires great effort due to the lack of available laboratory tests. In a case–control study (n = 56), the LDT revealed a statistically sound pattern in the PD-relevant pathways. Usage of the LDT for individuals confirmed its ability to reveal this pattern and thus diagnose PD at the early-stage (1–2.5 stages, according to Hoehn and Yahr scale). The detection of this pattern by LDT could diagnose PD with a specificity of 64%, sensitivity of 86% and an accuracy of 75%. Thus, this LDT can be used for further widespread testing.
The increase in life expectancy, leading to a rise in the proportion of older people, is accompanied by a prevalence of age-related disorders among the world population, the fight against which today is one of the leading biomedical challenges. Exploring the biological insights concerning the lifespan is one of the ways to provide a background for designing an effective treatment for the increase in healthy years of life. Untargeted direct injection mass spectrometry-based metabolite profiling of 12 species of Drosophila with significant variations in natural lifespans was conducted in this research. A cross-comparison study of metabolomic profiles revealed lifespan signatures of flies. These signatures indicate that lifespan extension is associated with the upregulation of amino acids, phospholipids, and carbohydrate metabolism. Such information provides a metabolome-level view on longevity and may provide a molecular measure of organism age in age-related studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.