Background The effect a restrictive goal directed therapy (GDT) fluid protocol combined with an enhanced recovery after surgery (ERAS) programme on hospital stay for patients undergoing major liver resection is unknown. Methods We conducted a multicentre randomized controlled pilot trial evaluating whether a patient-specific, surgery-specific intraoperative restrictive fluid optimization algorithm would improve duration of hospital stay and reduce perioperative fluid related complications. Results Forty-eight participants were enrolled. The median (IQR) length of hospital stay was 7.0 days (7.0:8.0) days in the restrictive fluid optimization algorithm group (Restrict group) vs. 8.0 days (6.0:10.0) in the conventional care group (Conventional group) (Incidence rate ratio 0.85; 95% Confidence Interval 0.71:1.1; p = 0.17). No statistically significant difference in expected number of complications per patient between groups was identified (IRR 0.85; 95%CI: 0.45–1.60; p = 0.60). Patients in the Restrict group had lower intraoperative fluid balances: 808 mL (571:1565) vs. 1345 mL (900:1983) (p = 0.04) and received a lower volume of fluid per kg/hour intraoperatively: 4.3 mL/kg/hr (2.6:5.8) vs. 6.0 mL/kg/hr (4.2:7.6); p = 0.03. No significant differences in the proportion of patients who received vasoactive drugs intraoperatively (p = 0.56) was observed. Conclusion In high-volume hepatobiliary surgical units, the addition of a fluid restrictive intraoperative cardiac output-guided algorithm, combined with a standard ERAS protocol did not significantly reduce length of hospital stay or fluid related complications. Our findings are hypothesis-generating and a larger confirmatory study may be justified.
Background Investigations of the electrophysiology of gaseous anesthetics xenon and nitrous oxide are limited revealing inconsistent frequency-dependent alterations in spectral power and functional connectivity. Here, the authors describe the effects of sedative, equivalent, stepwise levels of xenon and nitrous oxide administration on oscillatory source power using a crossover design to investigate shared and disparate mechanisms of gaseous xenon and nitrous oxide anesthesia. Methods Twenty-one healthy males underwent simultaneous magnetoencephalography and electroencephalography recordings. In separate sessions, sedative, equivalent subanesthetic doses of gaseous anesthetic agents nitrous oxide and xenon (0.25, 0.50, and 0.75 equivalent minimum alveolar concentration–awake [MACawake]) and 1.30 MACawake xenon (for loss of responsiveness) were administered. Source power in various frequency bands were computed and statistically assessed relative to a conscious/pre-gas baseline. Results Observed changes in spectral-band power (P < 0.005) were found to depend not only on the gas delivered, but also on the recording modality. While xenon was found to increase low-frequency band power only at loss of responsiveness in both source-reconstructed magnetoencephalographic (delta, 208.3%, 95% CI [135.7, 281.0%]; theta, 107.4%, 95% CI [63.5, 151.4%]) and electroencephalographic recordings (delta, 260.3%, 95% CI [225.7, 294.9%]; theta, 116.3%, 95% CI [72.6, 160.0%]), nitrous oxide only produced significant magnetoencephalographic high-frequency band increases (low gamma, 46.3%, 95% CI [34.6, 57.9%]; high gamma, 45.7%, 95% CI [34.5, 56.8%]). Nitrous oxide—not xenon—produced consistent topologic (frontal) magnetoencephalographic reductions in alpha power at 0.75 MACawake doses (44.4%; 95% CI [−50.1, −38.6%]), whereas electroencephalographically nitrous oxide produced maximal reductions in alpha power at submaximal levels (0.50 MACawake, −44.0%; 95% CI [−48.1,−40.0%]). Conclusions Electromagnetic source-level imaging revealed widespread power changes in xenon and nitrous oxide anesthesia, but failed to reveal clear universal features of action for these two gaseous anesthetics. Magnetoencephalographic and electroencephalographic power changes showed notable differences which will need to be taken into account to ensure the accurate monitoring of brain state during anaesthesia. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New
Background Right hepatectomy is a complex procedure that carries inherent risks of perioperative morbidity. To evaluate outcome differences between a low central venous pressure fluid intervention strategy and a goal directed fluid therapy (GDFT) cardiac output algorithm we performed a retrospective observational study. We hypothesized that a GDFT protocol would result in less intraoperative fluid administration, reduced complications and a shorter length of hospital stay. Methods Patients undergoing hepatectomy using an established enhanced recovery after surgery (ERAS) programme between 2010 and 2017 were extracted from a prospectively managed electronic hospital database. Inclusion criteria included adult patients, undergoing open right (segments V-VIII) or extended right (segments IV-VIII) hepatectomy. Primary outcome: amount of intraoperative fluid administration used between the two groups. Secondary outcomes: type and amount of vasoactive medications used, the development of predefined postoperative complications, hospital length of stay, and 30-day mortality. Complications were defined by the European Perioperative Clinical Outcome definitions and graded according to Clavien-Dindo classification. The association between GDFT and the amount of fluid and vasoactive medication used was investigated using logistic and linear regression models. Results Fifty-eight consecutive patients were identified. 26 patients received GDFT and 32 received Usual care. There were no significant differences in baseline patient characteristics. Less intraoperative fluid was used in the GDFT group: median (IQR) 2000 ml (1175 to 2700) vs. 2750 ml (2000 to 4000) in the Usual care group; p = 0.03. There were no significant differences in the use of vasoactive medications. Postoperative complications were similar: 9 patients (35%) in the GDFT group vs. 18 patients (56%) in the Usual care group; p = 0.10, OR: 0.41; (95%CI: 0.14 to 1.20). Median (IQR) length of stay for patients in the GDFT group was 7 days (6:8) vs. 9 days (7:13) in the Usual care group; incident rate ratio 0.72 (95%CI: 0.56 to 0.93); p = 0.012. There was no difference in perioperative mortality. Conclusions In patients undergoing open right hepatectomy with an established ERAS programme, use of GDFT was associated with less intraoperative fluid administration and reduced hospital length of stay when compared to Usual care. There were no significant differences in postoperative complications or mortality. Trial registration Australian New Zealand Clinical Trials Registry: no 12619000558123 on 10/4/19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.