Ventral pallidum (VP) is centrally positioned within mesocorticolimbic reward circuits, and its dense projection to ventral tegmental area (VTA) regulates neuronal activity there. However, VP is a heterogeneous structure, and how this complexity affects its role within wider reward circuits is unclear. Here we demonstrate that projections to VTA from rostral (RVP), but not caudal VP (CVP) are robustly Fos-activated during cue-induced reinstatement of cocaine seeking—a rat model of relapse in addiction. Moreover, designer receptor-mediated transient inactivation of RVP neurons, their terminals in VTA, or functional connectivity between RVP and VTA dopamine neurons blocks the ability of drug-associated cues (but not a cocaine prime) to reinstate cocaine seeking. In contrast, CVP neuronal inhibition instead blocked cocaine-primed, but not cue-induced reinstatement. This novel double dissociation in VP sub-regional roles in drug seeking is likely important for understanding mesocorticolimbic circuits underlying reward seeking and addiction.
Phosphodiesterase-4 (PDE4) plays an important role in mediating memory via the control of intracellular cAMP signaling; inhibition of PDE4 enhances memory. However, development of PDE4 inhibitors as memory enhancers has been hampered by their major side effect of emesis. PDE4 has four subtypes (PDE4A-D) consisting of 25 splice variants. Mice deficient in PDE4D displayed memory enhancement in radial arm maze, water maze, and object recognition tests. These effects were mimicked by repeated treatment with rolipram in wild-type mice. In addition, similarly as rolipram-treated wild-type mice, PDE4D-deficient mice also displayed increased hippocampal neurogenesis and phosphorylated cAMP response element-binding protein (pCREB). Furthermore, microinfusion of lentiviral vectors that contained microRNAs (miRNAs) targeting long-form PDE4D isoforms into bilateral dentate gyri of the mouse hippocampus downregulated PDE4D4 and PDE4D5, enhanced memory, and increased hippocampal neurogenesis and pCREB. Finally, while rolipram and PDE4D deficiency shortened ␣2 adrenergic receptor-mediated anesthesia, a surrogate measure of emesis, miRNA-mediated PDE4D knock-down in the hippocampus did not. The present results suggest that PDE4D, in particular long-form PDE4D, plays a critical role in the mediation of memory and hippocampal neurogenesis, which are mediated by cAMP/CREB signaling; reduced expression of PDE4D, or at least PDE4D4 and PDE4D5, in the hippocampus enhances memory but appears not to cause emesis. These novel findings will aid in the development of PDE4 subtype-or variant-selective inhibitors for treatment of disorders involving impaired cognition, including Alzheimer's disease.
In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception.
Interest in ultrasound education in medical schools has increased dramatically in recent years as reflected in a marked increase in publications on the topic and growing attendance at international meetings on ultrasound education. In 2006, the University of South Carolina School of Medicine introduced an integrated ultrasound curriculum (iUSC) across all years of medical school. That curriculum has evolved significantly over the 9 years. A review of the curriculum is presented, including curricular content, methods of delivery of the content, student assessment, and program assessment. Lessons learned in implementing and expanding an integrated ultrasound curriculum are also presented as are thoughts on future directions of undergraduate ultrasound education. Ultrasound has proven to be a valuable active learning tool that can serve as a platform for integrating the medical student curriculum across many disciplines and clinical settings. It is also well-suited for a competency-based model of medical education. Students learn ultrasound well and have embraced it as an important component of their education and future practice of medicine. An international consensus conference on ultrasound education is recommended to help define the essential elements of ultrasound education globally to ensure ultrasound is taught and ultimately practiced to its full potential. Ultrasound has the potential to fundamentally change how we teach and practice medicine to the benefit of learners and patients across the globe.Electronic supplementary materialThe online version of this article (doi:10.1186/s13089-015-0035-3) contains supplementary material, which is available to authorized users.
Peripheral initiators of muscle pain are virtually unknown, but likely key to development of chronic pain after muscle insult. The current study tested the hypothesis that ASIC3 in muscle is necessary for development of cutaneous mechanical, but not heat hyperalgesia induced by muscle inflammation. Using mechanical and heat stimuli, we assessed behavioral responses in ASIC3−/− and ASIC3+/+ mice after induction of carrageenan muscle inflammation. ASIC3−/−mice did not develop cutaneous mechanical hyperalgesia after muscle inflammation when compared to ASIC3+/ + mice; heat hyperalgesia developed similarly between groups. We then tested if the phenotype could be rescued in ASIC3−/− mice by using a recombinant herpes virus vector to express ASIC3 in skin (where testing occurred) or muscle (where inflammation occurred). Infection of mouse DRG neurons with ASIC3-encoding virus resulted in functional expression of ASICs. Injection of ASIC3-encoding virus into muscle or skin of ASIC3−/− mice resulted in ASIC3 mRNA in DRG and protein expression in DRG and the peripheral injection site. Injection of ASIC3-encoding virus into muscle, but not skin, resulted in development of mechanical hyperalgesia similar to that observed in ASIC3+/+ mice. Thus, ASIC3 in primary afferent fibers innervating muscle is critical to development of hyperalgesia that results from muscle insult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.