The hope of developing new transplantation therapies for degenerative diseases is limited by inefficient stem cell growth and immunological incompatibility with the host. Here we show that Notch receptor activation induces the expression of the specific target genes hairy and enhancer of split 3 (Hes3) and Sonic hedgehog (Shh) through rapid activation of cytoplasmic signals, including the serine/threonine kinase Akt, the transcription factor STAT3 and mammalian target of rapamycin, and thereby promotes the survival of neural stem cells. In both murine somatic and human embryonic stem cells, these positive signals are opposed by a control mechanism that involves the p38 mitogen-activated protein kinase. Transient administration of Notch ligands to the brain of adult rats increases the numbers of newly generated precursor cells and improves motor skills after ischaemic injury. These data indicate that stem cell expansion in vitro and in vivo, two central goals of regenerative medicine, may be achieved by Notch ligands through a pathway that is fundamental to development and cancer.
Although Ca2+-stimulated cAMP response element binding protein- (CREB-) dependent transcription has been implicated in growth, differentiation, and neuroplasticity, mechanisms for Ca2+-activated transcription have not been defined. Here, we report that extracellular signal-related protein kinase (ERK) signaling is obligatory for Ca2+-stimulated transcription in PC12 cells and hippocampal neurons. The sequential activation of ERK and Rsk2 by Ca2+ leads to the phosphorylation and transactivation of CREB. Interestingly, the Ca2+-induced nuclear translocation of ERK and Rsk2 to the nucleus requires protein kinase A (PKA) activation. This may explain why PKA activity is required for Ca2+-stimulated CREB-dependent transcription. Furthermore, the full expression of the late phase of long-term potentiation (L-LTP) and L-LTP-associated CRE-mediated transcription requires ERK activation, suggesting that the activation of CREB by ERK plays a critical role in the formation of long lasting neuronal plasticity.
Gene expression regulated by the cAMP response element (CRE) has been implicated in synaptic plasticity and long-term memory. It has been proposed that CRE-mediated gene expression is stimulated by signals that induce long-term potentiation (LTP). To test this hypothesis, we made mice transgenic for a CRE-regulated reporter construct. We focused on long-lasting long-term potentiation (L-LTP), because it depends on cAMP-dependent protein kinase activity (PKA) and de novo gene expression. CRE-mediated gene expression was markedly increased after L-LTP, but not after decremental UP (D-LTP). Furthermore, inhibitors of PKA blocked L-LTP and associated increases in CRE-mediated gene expression. These data demonstrate that the signaling required for the generation of L-LTP but not D-LTP is sufficient to stimulate CRE-mediated transcription in the hippocampus.
Activation of the extracellular signal-regulated kinase 1 (ERK1) and ERK2 by neurotrophins, neuronal activity, or cAMP has been strongly implicated in differentiation, survival, and adaptive responses of neurons during development and in the adult brain. Recently, a new member of the mitogen-activated protein (MAP) kinase family, ERK5, was discovered. Like ERK1 and ERK2, ERK5 is expressed in neurons, and ERK5 stimulation by epidermal growth factor is blocked by the MAP kinase/ERK kinase 1 (MEK1) inhibitors PD98059 and U0126. This suggests the interesting possibility that some of the functions attributed to ERK1/2 may be mediated by ERK5. However, the regulatory properties of ERK5 in primary cultured neurons have not been reported. Here we examined the regulation of ERK5 signaling in primary cultured cortical neurons. Our data demonstrate that, similar to ERK1/2, ERK5 is activated by neurotrophins including brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4. BDNF stimulation of ERK5 required the activity of MEK5. Surprisingly, ERK5 was not stimulated by cAMP or neuronal activity induced by glutamate or membrane depolarization. In contrast to ERK1/2, ERK5 strongly activated the transcriptional activity of myocyte enhancer factor 2C (MEF2C) in pheochromocytoma 12 (PC12) cells and was required for neurotrophin stimulation of MEF2C transcription in both PC12 cells and cortical neurons. Furthermore, ERK1/2, but not ERK5, induced transcription from Elk1 and the cAMP/ Ca(2+) response element in PC12 cells. Our data suggest that mechanisms for regulation of ERK5 and downstream transcriptional pathways regulated by ERK5 are distinct from those of ERK1/2 in neurons. Furthermore, ERK5 is the first MAP kinase identified whose activity is stimulated by neurotrophins but not by neuronal activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.