IMPORTANCE Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor.OBJECTIVE To investigate whether TTFields improves progression-free and overall survival of patients with glioblastoma, a fatal disease that commonly recurs at the initial tumor site or in the central nervous system. MAIN OUTCOMES AND MEASURESProgression-free survival (tested at α = .046). The secondary end point was overall survival (tested hierarchically at α = .048). Analyses were performed for the intent-to-treat population. Adverse events were compared by group. RESULTSOf the 695 randomized patients (median age, 56 years; IQR, 48-63; 473 men [68%]), 637 (92%) completed the trial. Median progression-free survival from randomization was 6.7 months in the TTFields-temozolomide group and 4.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.52-0.76; P < .001). Median overall survival was 20.9 months in the TTFields-temozolomide group vs 16.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.53-0.76; P < .001). Systemic adverse event frequency was 48% in the TTFields-temozolomide group and 44% in the temozolomide-alone group. Mild to moderate skin toxicity underneath the transducer arrays occurred in 52% of patients who received TTFields-temozolomide vs no patients who received temozolomide alone. CONCLUSIONS AND RELEVANCEIn the final analysis of this randomized clinical trial of patients with glioblastoma who had received standard radiochemotherapy, the addition of TTFields to maintenance temozolomide chemotherapy vs maintenance temozolomide alone, resulted in statistically significant improvement in progression-free survival and overall survival. These results are consistent with the previous interim analysis.TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00916409
clinicaltrials.gov Identifier: NCT00916409.
BackgroundStandard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax®-L) to standard therapy for newly diagnosed glioblastoma.MethodsAfter surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99). Following recurrence, all patients were allowed to receive DCVax-L, without unblinding. The primary endpoint was progression free survival (PFS); the secondary endpoint was overall survival (OS).ResultsFor the intent-to-treat (ITT) population (n = 331), median OS (mOS) was 23.1 months from surgery. Because of the cross-over trial design, nearly 90% of the ITT population received DCVax-L. For patients with methylated MGMT (n = 131), mOS was 34.7 months from surgery, with a 3-year survival of 46.4%. As of this analysis, 223 patients are ≥ 30 months past their surgery date; 67 of these (30.0%) have lived ≥ 30 months and have a Kaplan-Meier (KM)-derived mOS of 46.5 months. 182 patients are ≥ 36 months past surgery; 44 of these (24.2%) have lived ≥ 36 months and have a KM-derived mOS of 88.2 months. A population of extended survivors (n = 100) with mOS of 40.5 months, not explained by known prognostic factors, will be analyzed further. Only 2.1% of ITT patients (n = 7) had a grade 3 or 4 adverse event that was deemed at least possibly related to the vaccine. Overall adverse events with DCVax were comparable to standard therapy alone.ConclusionsAddition of DCVax-L to standard therapy is feasible and safe in glioblastoma patients, and may extend survival.Trial registration Funded by Northwest Biotherapeutics; Clinicaltrials.gov number: NCT00045968; https://clinicaltrials.gov/ct2/show/NCT00045968?term=NCT00045968&rank=1; initially registered 19 September 2002
Clinical diagnosis and treatment decisions for a subset of primary human brain tumors, gliomas, are based almost exclusively on tissue histology. Approaches for glioma diagnosis can be highly subjective due to the heterogeneity and infiltrative nature of these tumors and depend on the skill of the neuropathologist. There is therefore a critical need to develop more precise, nonsubjective, and systematic methods to classify human gliomas. To this end, mass spectrometric analysis has been applied to these tumors to determine glioma-specific protein patterns. Protein profiles have been obtained from human gliomas of various grades through direct analysis of tissue samples using matrix-assisted laser desorption ionization mass spectrometry (MS). Statistical algorithms applied to the MS profiles from tissue sections identified protein patterns that correlated with tumor histology and patient survival. Using a data set of 108 glioma patients, two patient populations, a short-term and a long-term survival group, were identified based on the tissue protein profiles. In addition, a subset of 57 patients diagnosed with high-grade, grade IV, malignant gliomas were analyzed and a novel classification scheme that segregated short-term and long-term survival patients based on the proteomic profiles was developed. The protein patterns described served as an independent indicator of patient survival. These results show that this new molecular approach to monitoring gliomas can provide clinically relevant information on tumor malignancy and is suitable for high-throughput clinical screening. (Cancer Res 2005; 65(17): 7674-81)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.