Asthma is the most prevalent pediatric chronic disease and affects more than 300 million people worldwide. Recent evidence in mice has identified a "critical window" early in life where gut microbial changes (dysbiosis) are most influential in experimental asthma. However, current research has yet to establish whether these changes precede or are involved in human asthma. We compared the gut microbiota of 319 subjects enrolled in the Canadian Healthy Infant Longitudinal Development (CHILD) Study, and show that infants at risk of asthma exhibited transient gut microbial dysbiosis during the first 100 days of life. The relative abundance of the bacterial genera Lachnospira, Veillonella, Faecalibacterium, and Rothia was significantly decreased in children at risk of asthma. This reduction in bacterial taxa was accompanied by reduced levels of fecal acetate and dysregulation of enterohepatic metabolites. Inoculation of germ-free mice with these four bacterial taxa ameliorated airway inflammation in their adult progeny, demonstrating a causal role of these bacterial taxa in averting asthma development. These results enhance the potential for future microbe-based diagnostics and therapies, potentially in the form of probiotics, to prevent the development of asthma and other related allergic diseases in children.
We present evidence that donor-reactive CD4+ T cells present in mice tolerant to donor alloantigens are phenotypically and functionally heterogeneous. CD4+ T cells contained within the CD45RBhigh fraction remained capable of mediating graft rejection when transferred to donor alloantigen-grafted T cell-depleted mice. In contrast, the CD45RBlow CD4+ and CD25+CD4+ populations failed to induce rejection, but rather, were able to inhibit rejection initiated by naive CD45RBhigh CD4+ T cells. Analysis of the mechanism of immunoregulation transferred by CD45RBlow CD4+ T cells in vivo revealed that it was donor Ag specific and could be inhibited by neutralizing Abs reactive with IL-10, but not IL-4. CD45RBlow CD4+ T cells from tolerant mice were also immune suppressive in vitro, as coculture of these cells with naive CD45RBhigh CD4+ T cells inhibited proliferation and Th1 cytokine production in response to donor alloantigens presented via the indirect pathway. These results demonstrate that alloantigen-specific regulatory T cells contained within the CD45RBlow CD4+ T cell population are responsible for the maintenance of tolerance to donor alloantigens in vivo and require IL-10 for functional activity.
Objective Dysbiosis of the infant gut microbiota may have long‐term health consequences. This study aimed to determine the impact of maternal intrapartum antibiotic prophylaxis (IAP) on infant gut microbiota, and to explore whether breastfeeding modifies these effects. Design Prospective pregnancy cohort of Canadian infants born in 2010–2012: the Canadian Healthy Infant Longitudinal Development (CHILD) Study. Setting General community. Sample Representative sub‐sample of 198 healthy term infants from the CHILD Study. Methods Maternal IAP exposures and birth method were documented from hospital records and breastfeeding was reported by mothers. Infant gut microbiota was characterised by Illumina 16S rRNA sequencing of faecal samples at 3 and 12 months. Main outcome measures Infant gut microbiota profiles. Results In this cohort, 21% of mothers received IAP for Group B Streptococcus prophylaxis or pre‐labour rupture of membranes; another 23% received IAP for elective or emergency caesarean section (CS). Infant gut microbiota community structures at 3 months differed significantly with all IAP exposures, and differences persisted to 12 months for infants delivered by emergency CS. Taxon‐specific composition also differed, with the genera Bacteroides and Parabacteroides under‐represented, and Enterococcus and Clostridium over‐represented at 3 months following maternal IAP. Microbiota differences were especially evident following IAP with emergency CS, with some changes (increased Clostridiales and decreased Bacteroidaceae) persisting to 12 months, particularly among non‐breastfed infants. Conclusions Intrapartum antibiotics in caesarean and vaginal delivery are associated with infant gut microbiota dysbiosis, and breastfeeding modifies some of these effects. Further research is warranted to explore the health consequences of these associations. Tweetable abstract Maternal #antibiotics during childbirth alter the infant gut #microbiome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.