A force sensor based on three weakly coupled resonators with ultrahigh sensitivity, Sensors & Actuators: A. Physical (2015), http://dx.doi.org/10.1016/j.sna. 2015.05.011 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractA proof-of-concept force sensor based on three degree-of-freedom (DoF) weakly coupled resonators was fabricated using a silicon-on-insulator (SOI) process and electrically tested in 20µTorr vacuum. Compared to the conventional single resonator force sensor with frequency shift as output, by measuring the amplitude ratio of two of the three resonators, the measured force sensitivity of the 3DoF sensor was 4.9 × 10 6 /N, which was improved by two orders magnitude. A bias stiffness perturbation was applied to avoid mode aliasing effect and improve the linearity of the sensor. The noise floor of the amplitude ratio output of the sensor was theoretically analyzed for the first time, using the transfer function model of the 3DoF weakly coupled resonator system. It was shown based on measurement results that the output noise was mainly due to the thermalelectrical noise of the interface electronics. The output noise spectral density was measured, and agreed well with theoretical estimations. The noise floor of the force sensor output was estimated to be approximately 1.39nN for an assumed 10Hz bandwidth of the output signal, resulting in a dynamic range of 74.8dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.