BackgroundGenetic BRCA2 insufficiency is associated with breast cancer development; however, in sporadic breast cancer cases, high BRCA2 expression is paradoxically correlated with poor prognosis. Because DSS1, a mammalian component of the transcription/RNA export complex, is known to stabilize BRCA2, we investigated how the expression of DSS1 is associated with clinical parameters in breast cancers.MethodsDSS1 mRNA and p53 protein were examined by RT-PCR and immunohistochemical staining of breast cancer specimens to classify DSS1high and DSS1low or p53high and p53low groups. Patient survival was compared using Kaplan-Meier method. DSS1high or DSS1low breast cancer cells were prepared by retroviral cDNA transfection or DSS1 siRNA on proliferation, cell cycle progression, and survival by flow cytometric analyses with or without anti-cancer drugs.ResultsIn comparison to patients with low levels of DSS1, high-DSS1 patients showed a poorer prognosis, with respect to relapse-free survival period. The effect of DSS1 was examined in breast cancer cells in vitro. DSS1 high-expression reduces the susceptibility of MCF7 cells to DNA-damaging drugs, as observed in cell cycle and apoptosis analyses. DSS1 knockdown, however, increased the susceptibility to the DNA-damaging drugs camptothecin and etoposide and caused early apoptosis in p53 wild type MCF7 and p53-insufficient MDA-MB-231 cells. DSS1 knockdown suppresses the proliferation of drug-resistant MDA-MB-231 breast cancer cells, particularly effectively in combination with DNA-damaging agents.ConclusionBreast cancers with high DSS1 expression have worse prognosis and shorter relapse-free survival times. DSS1 is necessary to rescue cells from DNA damage, but high DSS1 expression increases drug resistance. We suggest that DSS1 expression could be a useful marker for drug resistance in breast cancers, and DSS1 knockdown can induce tumor apoptosis when used in combination with DNA-damaging drugs.
Human chromosome 21 is known to be associated with the high risk of hematological malignancy but with resistance to breast cancer in the study of Down syndrome. In human cancers, we previously observed the significant alterations of the protein expression encoded by the ganp/MCM3AP gene on human chromosome 21q22.3. Here, we investigated GANP protein alterations in human breast cancer samples (416 cases) at various stages by immunohistochemical analysis. This cohort study clearly showed that expression of GANP is significantly decreased in human breast cancer cases with poor prognosis as an independent risk factor (relapse‐free survival, hazard ratio = 2.37, 95% confidence interval, 1.27–4.42, P = 0.007 [univariate analysis]; hazard ratio = 2.70, 95% confidence interval, 1.42–5.13, P = 0.002 [multivariate analysis]). To investigate whether the altered GANP expression is associated with mammary tumorigenesis, we created mutant mice that were conditionally deficient in the ganp/MCM3AP gene using wap‐cre recombinase transgenic mice. Mammary gland tumors occurred at a very high incidence in female mammary gland‐specific GANP‐deficient mice after severe impairment of mammary gland development during pregnancy. Moreover, tumor development also occurred in female post parous GANP‐heterodeficient mice. GANP has a significant role in the suppression of DNA damage caused by estrogen in human breast cancer cell lines. These results indicated that the GANP protein is associated with breast cancer resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.