The diversity of culturable, aerobic and heterotrophic Bacillus and Bacillus-derived genera (BBDG) was investigated in various extreme environments (including thermal springs, cold deserts, mangroves, salt lakes, arid regions, salt pans and acidic soils) of India. Heat treatment followed by enrichment in different media led to a total of 893 bacterial isolates. Amplified ribosomal DNA restriction analysis (ARDRA) using three restriction enzymes AluI, MspI and HaeIII led to the clustering of these isolates into 12-74 groups for the different sites at 75 % similarity index, adding up to 559 groups. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 392 bacilli, grouped in two families, Bacillaceae (89.03 %) and Paenibacillaceae (10.97 %), and included 13 different genera with 75 distinct species. It was found that among the thirteen genera, nine (Bacillus, Halobacillus, Lysinibacillus, Oceanobacillus, Pontibacillus, Salinibacill us, Sedimini bacillus, Thalassobacillus and Virgibacillus) belonged to Bacillaceae and four (Ammoniphilus, Aneurinibacillus, Brevibacillus and Paenibacillus) belonged to Paenibacillaceae. Novel isolates tolerant to low and high pH and temperature, salt and low moisture were identified. The major outcome of the present investigation was the identification of niche-specific species and also the ubiquitous presence of selected species of BBDG, which illustrate the diversity and pervasive nature of BBDG in extreme environments.
Climate change is one of the biggest challenges of the twenty-first century for sustainable agricultural production. Several reports highlighted the need for better agricultural practices and use of eco-friendly methods for sustainable crop production under such situations. In this context, Trichoderma species could be a model fungus to sustain crop productivity. Currently, these are widely used as inoculants for biocontrol, biofertilization, and phytostimulation. They are reported to improve photosynthetic efficiency, enhance nutrient uptake and increase nitrogen use efficiency in crops. Moreover, they can be used to produce bio-energy, facilitate plants for adaptation and mitigate adverse effect of climate change. The technological advancement in high throughput DNA sequencing and biotechnology provided deep insight into the complex and diverse biotic interactions established in nature by Trichoderma spp. and efforts are being made to translate this knowledge to enhance crop growth, resistance to disease and tolerance to abiotic stresses under field conditions. The discovery of several traits and genes that are involved in the beneficial effects of Trichoderma spp. has resulted in better understanding of the performance of bioinoculants in the field, and will lead to more efficient use of these strains and possibly to their improvement by genetic modification. The present mini-review is an effort to elucidate the molecular basis of plant growth promotion and defence activation by Trichoderma spp. to garner broad perspectives regarding their functioning and applicability for climate resilient agriculture.
Plant protection through siderophore producing rhizobacteria (SPR) has emerged as a sustainable approach for crop health management. In present study, 220 bacteria isolated from tomato rhizosphere were screened for in vitro antagonistic activity against Rhizoctonia solani AG-4. Nine potent antagonistic strains viz., Alcaligenes sp. (MUN1, MB21, and MPF37), Enterobacter sp. (MPM1), Pseudomonas sp. (M10A and MB65), P. aeruginosa (MPF14 and MB123) and P. fluorescens (MPF47) were identified on the basis of physiological characters and 16S rDNA sequencing. These strains were able to produce hydrolytic enzymes, hydrogen cyanide, indole acetic acid, although, only few strains were able to solubilize phosphate. Two strains (MB123 and MPF47) showed significant disease reduction in glasshouse conditions were further evaluated under field conditions using three different application methods. Application of P. fluorescens (MPF47) in nursery as soil mix + seedling root treatments prior to transplantation resulted in significant disease reduction compared to control. Total chlorophyll and available iron were significantly higher in the MPF47 treated plants in contrast to infected control. In conclusion, siderophore producing bacteria MPF47 have strong biocontrol abilities and its application as soil mix + seedling root treatments provided strong shield to plant roots against R. solani and could be used for effective bio-management of pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.