Genome scans of bipolar disorder (BPD) have not produced consistent evidence for linkage. The rank-based genome scan meta-analysis (GSMA) method was applied to 18 BPD genome scan data sets in an effort to identify regions with significant support for linkage in the combined data. The two primary analyses considered available linkage data for "very narrow" (i.e., BP-I and schizoaffective disorder-BP) and "narrow" (i.e., adding BP-II disorder) disease models, with the ranks weighted for sample size. A "broad" model (i.e., adding recurrent major depression) and unweighted analyses were also performed. No region achieved genomewide statistical significance by several simulation-based criteria. The most significant P values (<.01) were observed on chromosomes 9p22.3-21.1 (very narrow), 10q11.21-22.1 (very narrow), and 14q24.1-32.12 (narrow). Nominally significant P values were observed in adjacent bins on chromosomes 9p and 18p-q, across all three disease models on chromosomes 14q and 18p-q, and across two models on chromosome 8q. Relatively few BPD pedigrees have been studied under narrow disease models relative to the schizophrenia GSMA data set, which produced more significant results. There was no overlap of the highest-ranked regions for the two disorders. The present results for the very narrow model are promising but suggest that more and larger data sets are needed. Alternatively, linkage might be detected in certain populations or subsets of pedigrees. The narrow and broad data sets had considerable power, according to simulation studies, but did not produce more highly significant evidence for linkage. We note that meta-analysis can sometimes provide support for linkage but cannot disprove linkage in any candidate region.
We previously reported a genomewide scan to identify autism-susceptibility loci in 110 multiplex families, showing suggestive evidence (P <.01) for linkage to autism-spectrum disorders (ASD) on chromosomes 5, 8, 16, 19, and X and showing nominal evidence (P <.05) on several additional chromosomes (2, 3, 4, 10, 11, 12, 15, 18, and 20). In this follow-up analysis we have increased the sample size threefold, while holding the study design constant, so that we now report 345 multiplex families, each with at least two siblings affected with autism or ASD phenotype. Along with 235 new multiplex families, 73 new microsatellite markers were also added in 10 regions, thereby increasing the marker density at these strategic locations from 10 cM to approximately 2 cM and bringing the total number of markers to 408 over the entire genome. Multipoint maximum LOD scores (MLS) obtained from affected-sib-pair analysis of all 345 families yielded suggestive evidence for linkage on chromosomes 17, 5, 11, 4, and 8 (listed in order by MLS) (P <.01). The most significant findings were an MLS of 2.83 (P =.00029) on chromosome 17q, near the serotonin transporter (5-hydroxytryptamine transporter [5-HTT]), and an MLS of 2.54 (P =.00059) on 5p. The present follow-up genome scan, which used a consistent research design across studies and examined the largest ASD sample collection reported to date, gave either equivalent or marginally increased evidence for linkage at several chromosomal regions implicated in our previous scan but eliminated evidence for linkage at other regions.
Several independent studies and meta-analyses aimed at identifying genomic regions linked to bipolar disorder (BP) have failed to find clear and consistent evidence of linkage regions. Our hypothesis is that combining the original genotype data provides benefits of increased power and control over sources of heterogeneity that outweigh the difficulty and potential pitfalls of the implementation. We conducted a combined analysis using the original genotype data from 11 BP genomewide linkage scans comprising 5,179 individuals from 1,067 families. Heterogeneity among studies was minimized in our analyses by using uniform methods of analysis and a common, standardized marker map and was assessed using novel methods developed for meta-analysis of genome scans. To date, this collaboration is the largest and most comprehensive analysis of linkage samples involving a psychiatric disorder. We demonstrate that combining original genome-scan data is a powerful approach for the elucidation of linkage regions underlying complex disease. Our results establish genomewide significant linkage to BP on chromosomes 6q and 8q, which provides solid information to guide future gene-finding efforts that rely on fine-mapping and association approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.