Summary
Comparative analysis of BACarray data can provide important insights into complex biological systems. As demonstrated in the accompanying paper, BACarray translational profiling permits comprehensive studies of translated mRNAs in genetically defined cell populations following physiological perturbations. To establish the generality of this approach, we present BACarray translational profiles for twenty four CNS cell populations, and identify known cell-specific and enriched transcripts for each population. We report thousands of cell-specific mRNAs that were not detected in whole tissue microarray studies, and provide examples that demonstrate the benefits deriving from comparative analysis. To provide a foundation for further biological and in silico studies, we provide a resource of sixteen transgenic mouse lines, their corresponding anatomic characterization, and BACarray translational profiles for cell types from a variety of CNS structures. This resource will enable a wide spectrum of molecular and mechanistic studies of both well known and previously uncharacterized neural cell populations.
Summary
α6-containing (α6*) nicotinic ACh receptors (nAChRs) are selectively expressed in dopamine (DA) neurons and participate in cholinergic transmission. We generated and studied mice with gain-of-function α6* nAChRs, which isolate and amplify cholinergic control of DA transmission. In contrast to gene knockouts or pharmacological blockers, which show necessity, we show that activating α6* nAChRs and DA neurons is sufficient to cause locomotor hyperactivity. α6L9’S mice are hyperactive in their home cage and fail to habituate to a novel environment. Selective activation of α6* nAChRs with low doses of nicotine, by stimulating DA but not GABA neurons, exaggerates these phenotypes and produces a hyperdopaminergic state in vivo. Experiments with additional nicotinic drugs show that altering agonist efficacy at α6* provides fine-tuning of DA release and locomotor responses. α6*-specific agonists or antagonists may, by targeting endogenous cholinergic mechanisms, provide a new method for manipulating DA transmission in Parkinson’s disease, nicotine dependence, or attention deficit hyperactivity disorder.
In the above article, Figure 2A is stated to summarize data from Figures 1A and 1B; however, we inadvertently displayed a plot of a different data set that was collected with a similar but slightly different experimental design. The data in Figures 1A and 1B are from an experiment in which one group of flies underwent mock conditioning and an independent group was conditioned with electric shock, whereas the data in Figure 2A were from an experiment in which the same population of flies sequentially underwent mock conditioning and actual conditioning.We provide here a corrected graph for Figure 2A plotting the data from Figure 1. The new plot does not affect the description of the results in the paper or the conclusions drawn. We apologize for any inconvenience caused by this error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.