A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120, thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.
N-linked glycosylation is one of the most important protein post-translational modifications. Despite the importance of N-glycans, the structural determination of N-glycan isomers remains challenging. Here we develop a mass spectrometry method, logically derived sequence tandem mass spectrometry (LODES/MSn), to determine the structures of N-glycan isomers that cannot be determined using conventional mass spectrometry. In LODES/MSn, the sequences of successive collision-induced dissociation are derived from carbohydrate dissociation mechanisms and apply to N-glycans in an ion trap for structural determination. We validate LODES/MSn using synthesized N-glycans and subsequently applied this method to N-glycans extracted from soybean, ovalbumin, and IgY. Our method does not require permethylation, reduction, and labeling of N-glycans, or the mass spectrum databases of oligosaccharides and N-glycan standards. Moreover, it can be applied to all types of N-glycans (high-mannose, hybrid, and complex), as well as the N-glycans degraded from larger N-glycans by any enzyme or acid hydrolysis.
Klebsiella pneumoniae causes pneumonia and liver abscesses in humans worldwide and contains virulence factor capsular polysaccharides and lipopolysaccharides linked to the cell wall. Although capsular polysaccharides are good antigens for vaccine production and capsular oligosaccharides conjugate vaccines are proven effective against infections caused by encapsulated pathogens, there is still no Klebsiella pneumoniae vaccine available. One obstacle is that the capsular polysaccharide of a dominated Klebsiella pneumoniae serotype K2 is difficult to synthesize chemically due to the three 1,2-cis linkages in its structure. In this study, we successfully synthesized K2 capsular polysaccharides from tetra- to octasaccharides in highly a stereoselective manner. Subsequently, three synthesized glycans were conjugated to DT protein to provide glycoconjugate vaccine candidates (DT-Hexa, DT-Hepta, and DT-Octa) that were used in in vivo immunization experiments in mice. The results of immunized studies showed all three glycoconjugates elicited antibodies that recognized all of the synthetic glycans at 1:200-fold dilution. Particularly, the DT-Hepta conjugate elicited a higher level of antibodies that can recognize longer glycan (octasaccharide) even at 1:12800-fold dilution and exhibited good bactericidal activity. Our results concluded that heptasaccharide is the minimal epitope and a potential candidate for the vaccine against the K2 sero group of Klebsiella pneumoniae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.