Background Genome-wide association studies (GWASs) in Parkinson's disease (PD) have increased the scope of biological knowledge about the disease over the past decade. We sought to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into disease etiology. Methods We performed the largest meta-GWAS of PD to date, involving the analysis of 7.8M SNPs in 37.7K cases, 18.6K UK Biobank proxy-cases (having a first degree relative with PD), and 1.4M controls. We carried out a meta-analysis of this GWAS data to nominate novel loci. We then evaluated heritable risk estimates and predictive models using this data. We also utilized large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type and biological pathway enrichments for the identified risk factors. Additionally we examined shared genetic risk between PD and other phenotypes of interest via genetic correlations followed by Mendelian randomization. Findings We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16-36% of the heritable risk of PD depending on prevalence. Integrating methylation and expression data within a Mendelian randomization framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested PD loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes, smoking status, and educational attainment. Mendelian randomization between cognitive performance and PD risk showed a robust association. Interpretation These data provide the most comprehensive understanding of the genetic architecture of PD to date by revealing many additional PD risk loci, providing a biological context for these risk factors, and demonstrating that a considerable genetic component of this disease remains unidentified. Funding See supplemental materials (Text S2). lead to earlier detection and refined diagnostics, which may help improve clinical trials (4). The generation of copious amounts of public summary statistics created by this effort relating to both the GWAS and subsequent analyses of gene expression and methylation patterns may be of use to investigators planning follow-up functional studies in stem cells or other cellular screens, allowing them to prioritize targets more efficiently using our data as additional evidence. We hope our findings may have some downstream clinical impact in the future such as improved patient stratification for clinical trials and genetically informed drug targets.
Summary To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of three genome-wide association studies (GWAS) and two independent datasets genotyped on the Immunochip, involving 10,588 cases and 22,806 controls in total. We identified 15 new disease susceptibility regions, increasing the number of psoriasis-associated loci to 36 for Caucasians. Conditional analyses identified five independent signals within previously known loci. The newly identified shared disease regions encompassed a number of genes whose products regulate T-cell function (e.g. RUNX3, TAGAP and STAT3). The new psoriasis-specific regions were notable for candidate genes whose products are involved in innate host defense, encoding proteins with roles in interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C), and NF-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense.
Genome-wide association studies (GWAS) have identified hundreds of cardiometabolic disease (CMD) risk loci. However, they contribute little to genetic variance, and most downstream gene-regulatory mechanisms are unknown. We genotyped and RNA-sequenced vascular and metabolic tissues from 600 coronary artery disease patients in the STARNET study. Gene expression traits associated with CMD risk SNPs identified by GWAS were more extensively found in STARNET than in tissue- and disease-unspecific gene-tissue expression studies, indicating sharing of downstream cis-/trans-gene regulation across tissues and CMDs. In contrast, the regulatory effects of other GWAS risk SNPs were tissue-specific; abdominal fat emerged as an important gene-regulatory site for blood lipids, such as for the LDL-cholesterol and coronary artery disease risk-gene PCSK9. STARNET provides insights into gene-regulatory mechanisms for CMD risk loci, facilitating their translation into opportunities for diagnosis, therapy and prevention.
The analysis of an unparalleled resource revealed key clinical and genetic differences between patients with PPP and those with GPP.
Psoriasis is a complex disease of skin with a prevalence of about 2%. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for psoriasis to date, including data from eight different Caucasian cohorts, with a combined effective sample size >39,000 individuals. We identified 16 additional psoriasis susceptibility loci achieving genome-wide significance, increasing the number of identified loci to 63 for European-origin individuals. Functional analysis highlighted the roles of interferon signalling and the NFκB cascade, and we showed that the psoriasis signals are enriched in regulatory elements from different T cells (CD8+ T-cells and CD4+ T-cells including TH0, TH1 and TH17). The identified loci explain ∼28% of the genetic heritability and generate a discriminatory genetic risk score (AUC=0.76 in our sample) that is significantly correlated with age at onset (p=2 × 10−89). This study provides a comprehensive layout for the genetic architecture of common variants for psoriasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.