By helping to promote the future integration of genetic testing in health care delivery, including clinical decision making, the MVP is designed to contribute to the development of precision medicine.
Large-scale multi-ethnic cohorts offer unprecedented opportunities to elucidate the genetic factors influencing complex traits related to health and disease among minority populations. At the same time, the genetic diversity in these cohorts presents new challenges for analysis and interpretation. We consider the utility of race and/or ethnicity categories in genome-wide association studies (GWASs) of multi-ethnic cohorts. We demonstrate that race/ethnicity information enhances the ability to understand population-specific genetic architecture. To address the practical issue that self-identified racial/ethnic information may be incomplete, we propose a machine learning algorithm that produces a surrogate variable, termed HARE. We use height as a model trait to demonstrate the utility of HARE and ethnicity-specific GWASs.
The Million Veteran Program (MVP), initiated by the Department of Veterans Affairs (VA), aims to collect biosamples with consent from at least one million veterans. Presently, blood samples have been collected from over 800,000 enrolled participants. The size and diversity of the MVP cohort, as well as the availability of extensive VA electronic health records, make it a promising resource for precision medicine. MVP is conducting array-based genotyping to provide a genome-wide scan of the entire cohort, in parallel with wholegenome sequencing, methylation, and other 'omics assays. Here, we present the design and performance of the MVP 1.0 custom Axiom array, which was designed and developed as a single assay to be used across the multi-ethnic MVP cohort. A unified genetic quality-control analysis was developed and conducted on an initial tranche of 485,856 individuals, leading to a high-quality dataset of 459,777 unique individuals. 668,418 genetic markers passed quality control and showed high-quality genotypes not only on common variants but also on rare variants. We confirmed that, with non-European individuals making up nearly 30%, MVP's substantial ancestral diversity surpasses that of other large biobanks. We also demonstrated the quality of the MVP dataset by replicating established genetic associations with height in European Americans and African Americans ancestries. This current dataset has been made available to approved MVP researchers for genome-wide association studies and other downstream analyses. Further data releases will be available for analysis as recruitment at the VA continues and the cohort expands both in size and diversity.
Drug repurposing provides a rapid approach to meet the urgent need for therapeutics to address COVID-19. To identify therapeutic targets relevant to COVID-19, we conducted Mendelian randomization (MR) analyses, deriving genetic instruments based on transcriptomic and proteomic data for 1,263 actionable proteins that are targeted by approved drugs or in clinical phase of drug development. Using summary statistics from the Host Genetics Initiative and the Million Veteran Program, we studied 7,554 patients hospitalized with COVID-19 and >1 million controls. We found significant Mendelian randomization results for three proteins (ACE2:
P
=1.6×10
-6
, IFNAR2:
P
=9.8×10
-11
, and IL-10RB:
P
=2.3×10
-14
) using
cis
-eQTL genetic instruments that also had strong evidence for colocalization with COVID-19 hospitalization. To disentangle the shared eQTL signal for
IL10RB
and
IFNAR2
, we conducted phenome-wide association scans and pathway enrichment analysis, which suggested that
IFNAR2
is more likely to play a role in COVID-19 hospitalization. Our findings prioritize trials of drugs targeting IFNAR2 and ACE2 for early management of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.