Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a “dream” display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays.
Nanostructured AgI/TiO(2) photocatalyst was synthesized by a feasible approach with AgNO(3), LiI, and Ti(OBu)(4) and characterized by X-ray diffraction, transmission electron microscopy, angle-dependent X-ray photoelectron spectroscopy, diffusive reflectance UV-vis spectroscopy, Raman spectroscopy, photoluminescence, and the Brunauer-Emmett-Teller technique. The results of characterization reveal that the nanostructured AgI/TiO(2) has a novel core/shell/shell nanostructure of AgI/Ag-I(2)/TiO(2). Compared with TiO(2) (P25) supported AgI, the formation of the nanostructure results in substantial shifting of the absorption edge of AgI to red, enhancement of the absorption intensity, and the appearance of a strong tail absorption above 490 nm, which is assigned to the absorption of I(2) and Ag. Photocatalytic tests show that the nanostructured AgI/TiO(2) photocatalyst exhibited very high visible-light-induced photocatalytic activity for the photodegradation of crystal violet and 4-chlorophenol, which is 4 and 6 times higher than that of P25 titania supported AgI, respectively. The highly efficient visible-light-induced photocatalytic activity of the nanostructured AgI/TiO(2) is attributed to its strong absorption in the visible region and low recombination rate of the electron-hole pair due to the synergetic effect among the components of AgI, Ag, I(20, and TiO(2) in the nanostructured AgI/TiO(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.