Ozone (O 3 ) concentrations in periurban areas in East Asia are sufficiently high to decrease crop yield. However, little is known about the genotypic differences in O 3 sensitivity in winter wheat in relation to year of cultivar release. This paper reports genotypic variations in O 3 sensitivity in 20 winter wheat cultivars released over the past 60 years in China highlighting O 3 -induced mechanisms. Wheat plants were exposed to elevated O 3 (82 ppb O 3 , 7 h day À1 ) or charcoal-filtered air (o5 ppb O 3 ) for 21 days in open top chambers. Responses to O 3 were assessed by the levels of antioxidative activities, protein alteration, membrane lipid peroxidation, gas exchange, leaf chlorophyll, dark respiration and growth. We found that O 3 significantly reduced foliar ascorbate (À14%) and soluble protein (À22%), but increased peroxidase activity (146%) and malondialdehyde (1 38%). Elevated O 3 depressed light saturated net photosynthetic rate (À24%), stomatal conductance (À8%) and total chlorophyll (À11%), while stimulated dark respiration (1 28%) and intercellular CO 2 concentration (1 39%). O 3 also reduced overall plant growth, but to a greater extent in root (À32%) than in shoot (À17%) biomass. There was significant genotypic variation in potential sensitivity to O 3 that did not correlate to observed O 3 tolerance. Sensitivity to O 3 in cultivars of winter wheat progressed with year of release and correlated with stomatal conductance and dark respiration in O 3 -exposed plants. O 3 -induced loss in photosynthetic rate was attributed primarily to impaired activity of mesophyll cells and loss of integrity of cellular membrane as evidenced by increased intercellular CO 2 concentration and lipid peroxidation. Our findings demonstrated that higher sensitivity to O 3 in the more recently released cultivars was induced by higher stomatal conductance, larger reduction in antioxidative capacity and lower levels of dark respiration leading to higher oxidative damage to proteins and integrity of cellular membranes.
Emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) is a major stem borer of ash (Fraxinus spp.). It is univoltine in Tianjin, while it is semivoltine in Heilongjiang Province, and both univoltine and semivoltine in Changchun, Jilin Province, where the majority is univoltine. The longevity of emerald ash borer adults is 17.2 ± 4.6 days (n= 45), eggs 9.0 ± 1.1 days (n= 103), univoltine larvae 308 days, semivoltine larvae 673 days, and pupae 61.2±1.6 days (n= 45). It takes about 100 days from the time larvae bore into the phloem to when they complete the pupal cell. In a 10‐year‐old velvet ash (Fraxinus velutina Torr.) plantation in Tianjin, emerald ash borer preferred to oviposit on the regions of boles from 50‐150 cm above ground, accounting for 76.7% of the total girdling. Girdling on the south side of the tree boles accounted for 43.40% of the total girdling. The emerald ash borer population density is higher at the edge of the plantation compared with the center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.