Oxidative stress plays an important role in the development of aging-related diseases by accelerating the lipid peroxidation of polyunsaturated fatty acids in the cell membrane, resulting in the production of aldehydes, such as malondialdehyde and 4-hydroxy-2-nonenal (4-HNE) and other toxic substances. The compound 4-HNE forms adducts with DNA or proteins, disrupting many cell signaling pathways including the regulation of apoptosis signal transduction pathways. The binding of proteins to 4-HNE (4-HNE-protein) acts as an important marker of lipid peroxidation, and its increasing concentration in brain tissues and fluids because of aging, ultimately gives rise to some hallmark disorders, such as neurodegenerative diseases (Alzheimer’s and Parkinson’s diseases), ophthalmic diseases (dry eye, macular degeneration), hearing loss, and cancer. This review aims to describe the physiological origin of 4-HNE, elucidate its toxicity in aging-related diseases, and discuss the detoxifying effect of aldehyde dehydrogenase and glutathione in 4-HNE-driven aging-related diseases.
Significance and Impact of the Study: The microbial metabolites in the rumen provide nutritional precursors that are critical for general health and milk production in dairy cows. However, studies of the effect of diet on ruminal microbial metabolism are scant. In our current study, we analysed the ruminal microbial metabolite profile of cows fed different types of roughage. We found that the ruminal microbial metabolite profile of cows fed a mixed-roughage diet differed significantly from that of cows fed a single type of roughage. Certain metabolites, such as acetate, hydrocinnamate and methylamine, were closely correlated with specific types of roughage. Our findings provide insight into the effects of different roughages on ruminal microbial fermentation in dairy cows. AbstractThe aim of our study was to determine the effect of diets with different types of roughage on the ruminal microbial metabolite profile in dairy cows. Holstein dairy cows were fed a diet containing either corn stover (CS group) or a mixture of alfalfa hay, Leymus chinensis hay and corn silage (MF group) at 0700 and 1900 h daily. Rumen fluid was sampled from each cow through a ruminal cannula at 0630 and 1030 h, and the mixed ruminal fluid from 3 day in each cow was analysed using nuclear magnetic resonance (NMR) spectroscopy. A multivariate analysis revealed a significant difference between the ruminal metabolome of the CS and MF groups at both time points. The MF group had higher levels of acetate, valerate, hydrocinnamate and methylamine and lower levels of glucose, glycine, propionate and isovalerate than those in the CS group. Our results showed that different types of roughages can significantly influence the ruminal microbial metabolome, especially with regard to organic acids, amines and amino acids.
Idiopathic pulmonary fibrosis (IPF), a lethal respiratory disease with few treatment options, occurs due to repetitive microinjuries to alveolar epithelial cells (AECs) and progresses with an overwhelming deposition of extracellular matrix (ECM), ultimately resulting in fibrotic scars and destroyed the alveolar architecture. Here, an inhaled ribosomal protein‐based mRNA nanoformulation is reported for clearing the intrapulmonary ECM and re‐epithelializing the disrupted alveolar epithelium, thereby reversing established fibrotic foci in IPF. The nanoformulation is sequentially assembled by a ribosomal protein‐condensed mRNA core, a bifunctional peptide‐modified corona and keratinocyte growth factor (KGF) with a PEGylated shielding shell. When inhaled via a nebulizer, the nanoformulations carried by microdrops are deposited in the alveoli, and penetrate into fibrotic foci, where the outer KGFs are detached after matrix metalloproteinase 2 (MMP2) triggering. The RGD motif‐grafted cores then expose and specifically target the integrin‐elevated cells for the intracellular delivery of mRNA. Notably, repeated inhalation of the nanoformulations accelerates the clearance of locoregional collagen by boosting the intralesional expression of MMP13 and alveolar re‐epithelialization mediated by KGFs, which synergistically ameliorates the lung function of a bleomycin‐induced murine model. Therefore, this work provides an alternative mRNA‐inhalation delivery strategy, which shows great potential for the treatment of IPF.
Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide. We validated the utility of plasma metabolomics analysis in the clinical diagnosis of acute TBI in a rat model of controlled cortical impact (CCI) using gas chromatography/mass spectrometry (GC/MS). Thirty Sprague-Dawley rats were randomly divided into two groups of 15 rats each: the CCI group and sham group. Blood samples were obtained from the rats within the first 24 h after TBI injury. GC/MS measurements were performed to evaluate the profile of acute TBI-induced metabolic changes, resulting in the identification of 45 metabolites in plasma. Principal component analysis, partial least squares-discriminant analysis, orthogonal partial least square discriminant analysis using hierarchical clustering and univariate/multivariate analyses revealed clear differences in the plasma metabolome between the acute CCI group and the sham group. CCI induced distinctive changes in metabolites including linoleic acid metabolism, amino acid metabolism, galactose metabolism, and arachidonic acid metabolism. Specifically, the acute CCI group exhibited significant alterations in proline, phosphoric acid, β-hydroxybutyric acid, galactose, creatinine, L-valine, linoleic acid and arachidonic acid. A receiver operating characteristic curve analysis showed that the above 8 metabolites in plasma could be used as the potential biomarkers for the diagnosis of acute TBI. Furthermore, this study is the first time to identify the galactose as a biomarker candidate for acute TBI. This comprehensive metabolic analysis complements target screening for potential diagnostic biomarkers of acute TBI and enhances predictive value for the therapeutic intervention of acute TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.