Generating laterally ordered, ultradense, macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries. We used faceted surfaces of commercially available sapphire wafers to guide the self-assembly of block copolymer microdomains into oriented arrays with quasi-long-range crystalline order over arbitrarily large wafer surfaces. Ordered arrays of cylindrical microdomains 3 nanometers in diameter, with areal densities in excess of 10 terabits per square inch, were produced. The sawtoothed substrate topography provides directional guidance to the self-assembly of the block copolymer, which is tolerant of surface defects, such as dislocations. The lateral ordering and lattice orientation of the single-grain arrays of microdomains are maintained over the entire surface. The approach described is parallel, applicable to different substrates and block copolymers, and opens a versatile route toward ultrahigh-density systems.
Timely intervention for cancer requires knowledge of its earliest genetic aberrations. Sequencing of tumors and their metastases reveals numerous abnormalities occurring late in progression. A means to temporally order aberrations in a single cancer, rather than inferring them from serially acquired samples, would define changes preceding even clinically evident disease. We integrate DNA sequence and copy number information to reconstruct the order of abnormalities as individual tumors evolve for two separate cancer types. We detect vast, unreported expansion of simple mutation sharply demarcated by recombinative loss of the second copy of TP53 in cutaneous squamous cell carcinomas (cSCCs) and serous ovarian adenocarcinomas, in the former surpassing 50 mutations per megabase. In cSCCs, we also report diverse secondary mutations in known and novel oncogenic pathways, illustrating how such expanded mutagenesis directly promotes malignant progression. These results reframe paradigms in which TP53 mutation is required later, to bypass senescence induced by driver oncogenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.