Hesperetin is potential natural compound for its attributes in various anticancer activities. Hesperetin can modulate diverse signaling pathways in cancer cells related to growth, metastasis, and apoptosis. Hesperetin also increases chemosensitivity in chemotherapy in a synergistic approach. Hesperetin processes less toxicity in human body but more bioavailability, conferring its application in clinical settings.
Breast cancer (BC) is one of the most common malignancies in women. Although widespread successful synthetic drugs are available, natural compounds can also be considered as significant anticancer agents for treating BC. Some natural compounds have similar effects as synthetic drugs with fewer side effects on normal cells. Therefore, we aimed to unravel and analyze several molecular mechanisms of genistein (GNT) against BC. GNT is a type of dietary phytoestrogen included in the flavonoid group with a similar structure to estrogen that might provide a strong alternative and complementary medicine to existing chemotherapeutic drugs. Previous research reported that GNT could target the estrogen receptor (ER) human epidermal growth factor receptor-2 (HER2) and several signaling molecules against multiple BC cell lines and sensitize cancer cell lines to this compound when used at an optimal inhibitory concentration. More specifically, GNT mediates the anticancer mechanism through apoptosis induction, arresting the cell cycle, inhibiting angiogenesis and metastasis, mammosphere formation, and targeting and suppressing tumor growth factors. Furthermore, it acts via upregulating tumor suppressor genes and downregulating oncogenes in vitro and animal model studies. In addition, this phytochemical synergistically reverses the resistance mechanism of standard chemotherapeutic drugs, increasing their efficacy against BC. Overall, in this review, we discuss several molecular interactions of GNT with numerous cellular targets in the BC model and show its anticancer activities alone and synergistically. We conclude that GNT can have favorable therapeutic advantages when standard drugs are not available in the pharma markets.
The use of dietary phytochemical rather than conventional therapies to treat numerous cancers is now a well-known approach in medical science. Easily available and less toxic dietary phytochemicals present in plants should be introduced in the list of phytochemical-based treatment areas. Sesamin, a natural phytochemical, may be a promising chemopreventive agent aiming to manage breast cancer. In this study, we discussed the pharmacological properties of sesamin that determine its therapeutics opportunity to be used in breast cancer treatment and other diseases. Sesamin is available in medicinal plants, especially in Sesamum indicum, and is easily metabolized by the liver. To better understand the antibreast cancer consequence of sesamin, we postulate some putative pathways related to the antibreast cancer mechanism: (1) regulation of estrogen receptor (ER-α and ER-β) activities, (2) suppressing programmed death-ligand 1 (PD-L1) overexpression, (3) growth factor receptor inhibition, and (4) some tyrosine kinase pathways. Targeting these pathways, sesamin can modulate cell proliferation, cell cycle arrest, cell growth and viability, metastasis, angiogenesis, apoptosis, and oncogene inactivation in various in vitro and animal models. Although the actual tumor intrinsic signaling mechanism targeted by sesamin in cancer treatment is still unknown, this review summarized that this phytoestrogen suppressed NF-κB, STAT, MAPK, and PIK/AKT signaling pathways and activated some tumor suppressor protein in numerous breast cancer models. Cotreatment with γ-tocotrienol, conventional drugs, and several drug carriers systems increased the anticancer potentiality of sesamin. Furthermore, sesamin exhibited promising pharmacokinetics properties with less toxicity in the bodies. Overall, the shreds of evidence highlight that sesamin can be a potent candidate to design drugs against breast cancer. So, like other phytochemicals, sesamin can be consumed for better therapeutic advantages due to having the ability to target a plethora of molecular pathways until clinically trialed standard drugs are not available in pharma markets.
Prostate cancer remains one of the most frequent and deadliest malignancies in males, where the rate of disease progression is closely associated with the type of dietary intake, specifically Western-style diet. Indeed intake of the Asian diet, which contains abundant phytoestrogens, is inversely correlated with a higher risk of prostate cancer, suggesting a chemoprotective effect of phytoestrogen against cancer progression. Although the role of phytoestrogens in cancer treatment was well documented, their impact on prostate cancer is not well understood. Therefore, the present review discusses the possible chemopreventive effect of phytoestrogens, emphasizing their efficacy at the different stages of carcinogenesis. Furthermore, phytoestrogens provide a cytoprotective effect in conventional chemotherapy and enhance chemosensitivity to tumor cells, which have also been discussed. This compilation provides a solid basis for future research on phytoestrogens as a promising avenue for anticancer drug development and also recommends these beneficiary compounds in the daily diet to manage and prevent prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.