This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
SummaryContinued uncontrolled transmission of the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in many parts of the world is creating the conditions for significant virus evolution. Here, we describe a new SARS-CoV-2 lineage (501Y.V2) characterised by eight lineage-defining mutations in the spike protein, including three at important residues in the receptor-binding domain (K417N, E484K and N501Y) that may have functional significance. This lineage emerged in South Africa after the first epidemic wave in a severely affected metropolitan area, Nelson Mandela Bay, located on the coast of the Eastern Cape Province. This lineage spread rapidly, becoming within weeks the dominant lineage in the Eastern Cape and Western Cape Provinces. Whilst the full significance of the mutations is yet to be determined, the genomic data, showing the rapid displacement of other lineages, suggest that this lineage may be associated with increased transmissibility.
The first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in South Africa was identified on 5 March 2020, and by 26 March the country was in full lockdown (Oxford stringency index of 90) 1 . Despite the early response, by November 2020, over 785,000 people in South Africa were infected, which accounted for approximately 50% of all known African infections 2 . In this study, we analyzed 1,365 near whole genomes and report the identification of 16 new lineages of SARS-CoV-2 isolated between 6 March and 26 August 2020. Most of these lineages have unique mutations that have not been identified elsewhere. We also show that three lineages (B.1.1.54, B.1.1.56 and C.1) spread widely in South Africa during the first wave, comprising ~42% of all infections in the country at the time. The newly identified C lineage of SARS-CoV-2, C.1, which has 16 nucleotide mutations as compared with the original Wuhan sequence, including one amino acid change on the spike protein, D614G (ref. 3 ), was the most geographically widespread lineage in South Africa by the end of August 2020. An early South African-specific lineage, B.1.106, which was identified in April 2020 (ref. 4 ), became extinct after nosocomial outbreaks were controlled in KwaZulu-Natal Province. Our findings show that genomic surveillance can be implemented on a large scale in Africa to identify new lineages and inform measures to control the spread of SARS-CoV-2. Such genomic surveillance presented in this study has been shown to be crucial in the identification of the 501Y.V2 variant in South Africa in December 2020 (ref. 5 ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.