These studies provide clinical evidence for a subpopulation of chemotherapy-resistant breast cancer-initiating cells. Lapatinib did not lead to an increase in these tumorigenic cells, and, in combination with conventional therapy, specific pathway inhibitors may provide a therapeutic strategy for eliminating these cells to decrease recurrence and improve long-term survival.
Purpose
Genomic profiling studies suggest triple-negative breast cancer (TNBC) is a heterogeneous disease. In this study we sought to define TNBC subtypes and identify subtype-specific markers and targets.
Patients and Methods
RNA and DNA profiling analyses were conducted on 198 TNBC tumors (ER-negativity defined as Allred Scale value ≤2) with >50% cellularity (discovery set: n=84; validation set: n=114) collected at Baylor College of Medicine. An external data set of 7 publically-accessible TNBC studies was used to confirm results. DNA copy number, disease-free survival (DFS) and disease-specific survival (DSS) were analyzed independently using these datasets.
Results
We identified and confirmed four distinct TNBC subtypes: (1) Luminal-AR (LAR); 2) Mesenchymal (MES); 3) Basal-Like Immune-Suppressed (BLIS), and 4) Basal-Like Immune-Activated (BLIA). Of these, prognosis is worst for BLIS tumors and best for BLIA tumors for both DFS (logrank test p=0.042 and 0.041, respectively) and DSS (logrank test p=0.039 and 0.029, respectively). DNA copy number analysis produced two major groups (LAR and MES/BLIS/BLIA), and suggested gene amplification drives gene expression in some cases (FGFR2 (BLIS)). Putative subtype-specific targets were identified: 1) LAR: androgen receptor and the cell surface mucin MUC1; 2) MES: growth factor receptors (PDGF receptor A; c-Kit); 3) BLIS: an immune suppressing molecule (VTCN1); and 4) BLIA: Stat signal transduction molecules and cytokines.
Conclusion
There are four stable TNBC subtypes characterized by the expression of distinct molecular profiles that have distinct prognoses. These studies identify novel subtype-specific targets that can be targeted in the future for effective treatment of TNBCs.
The antitumor activity of tamoxifen in patients with breast cancer may be determined, in part, by tumor levels of AIB1 and HER-2. Thus, AIB1 may be an important diagnostic and therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.