Marine spatial planning provides a comprehensive framework for managing multiple uses of the marine environment and has the potential to minimize environmental impacts and reduce conflicts among users. Spatially explicit assessments of the risks to key marine species from human activities are a requirement of marine spatial planning. We assessed the risk of ships striking humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), and fin (Balaenoptera physalus) whales in alternative shipping routes derived from patterns of shipping traffic off Southern California (U.S.A.). Specifically, we developed whale-habitat models and assumed ship-strike risk for the alternative shipping routes was proportional to the number of whales predicted by the models to occur within each route. This definition of risk assumes all ships travel within a single route. We also calculated risk assuming ships travel via multiple routes. We estimated the potential for conflict between shipping and other uses (military training and fishing) due to overlap with the routes. We also estimated the overlap between shipping routes and protected areas. The route with the lowest risk for humpback whales had the highest risk for fin whales and vice versa. Risk to both species may be ameliorated by creating a new route south of the northern Channel Islands and spreading traffic between this new route and the existing route in the Santa Barbara Channel. Creating a longer route may reduce the overlap between shipping and other uses by concentrating shipping traffic. Blue whales are distributed more evenly across our study area than humpback and fin whales; thus, risk could not be ameliorated by concentrating shipping traffic in any of the routes we considered. Reducing ship-strike risk for blue whales may be necessary because our estimate of the potential number of strikes suggests that they are likely to exceed allowable levels of anthropogenic impacts established under U.S. laws.
Targeted environmental monitoring reveals contamination by known chemicals, but may exclude potentially pervasive but unknown compounds. Marine mammals are sentinels of persistent and bioaccumulative contaminants due to their longevity and high trophic position. Using nontargeted analysis, we constructed a mass spectral library of 327 persistent and bioaccumulative compounds identified in blubber from two ecotypes of common bottlenose dolphins (Tursiops truncatus) sampled in the Southern California Bight. This library of halogenated organic compounds (HOCs) consisted of 180 anthropogenic contaminants, 41 natural products, 4 with mixed sources, 8 with unknown sources, and 94 with partial structural characterization and unknown sources. The abundance of compounds whose structures could not be fully elucidated highlights the prevalence of undiscovered HOCs accumulating in marine food webs. Eighty-six percent of the identified compounds are not currently monitored, including 133 known anthropogenic chemicals. Compounds related to dichlorodiphenyltrichloroethane (DDT) were the most abundant. Natural products were, in some cases, detected at abundances similar to anthropogenic compounds. The profile of naturally occurring HOCs differed between ecotypes, suggesting more abundant offshore sources of these compounds. This nontargeted analytical framework provided a comprehensive list of HOCs that may be characteristic of the region, and its application within monitoring surveys may suggest new chemicals for evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.