Neuroblastoma is a frequently lethal childhood tumor in which MYC gene deregulation, commonly as MYCN amplification, portends poor outcome. Identifying the requisite biopathways downstream of MYC may provide therapeutic opportunities. We used transcriptome analyses to show that MYCN-amplified neuroblastomas have coordinately deregulated myriad polyamine enzymes (including ODC1, SRM, SMS, AMD1, OAZ2, and SMOX) to enhance polyamine biosynthesis. High-risk tumors without MYCN amplification also overexpress ODC1, the ratelimiting enzyme in polyamine biosynthesis, when compared with lower-risk tumors, suggesting that this pathway may be pivotal. Indeed, elevated ODC1 (independent of MYCN amplification) was associated with reduced survival in a large independent neuroblastoma cohort. As polyamines are essential for cell survival and linked to cancer progression, we studied polyamine antagonism to test for metabolic dependence on this pathway in neuroblastoma. The Odc inhibitor A-difluoromethylornithine (DFMO) inhibited neuroblast proliferation in vitro and suppressed oncogenesis in vivo. DFMO treatment of neuroblastoma-prone genetically engineered mice (TH-MYCN) extended tumor latency and survival in homozygous mice and prevented oncogenesis in hemizygous mice. In the latter, transient Odc ablation permanently prevented tumor onset consistent with a time-limited window for embryonal tumor initiation. Importantly, we show that DFMO augments antitumor efficacy of conventional cytotoxics in vivo. This work implicates polyamine biosynthesis as an arbiter of MYCN oncogenesis and shows initial efficacy for polyamine depletion strategies in neuroblastoma, a strategy that may have utility for this and other MYC-driven embryonal tumors. [Cancer Res 2008;68(23):9735-45]
Correcting T cell immunosuppression may unleash powerful antitumor responses, however, knowledge about the mechanisms and modifiers that may be targeted to improve therapy remains incomplete. Here we report that polyamine elevation in cancer, a common metabolic aberration in aggressive lesions, contributes significantly to tumor immunosuppression and that a polyamine depletion strategy can exert antitumor effects that may also promote immunity. A polyamine-blocking therapy (PBT) that combines the well-characterized ornithine decarboxylase (ODC) inhibitor difluoromethylornithine (DFMO) with AMXT1501, a novel inhibitor of the polyamine transport system, blocked tumor growth in immunocompetent mice but not in athymic nude mice lacking T cells. PBT had little effect on the proliferation of epithelial tumor cells but it increased the number of apoptotic cells. Analysis of CD45+ tumor immune infiltrates revealed that PBT decreased levels of Gr-1+CD11b+ myeloid suppressor cells and increased CD3+ T cells. Strikingly, in a model of neoadjuvant therapy, mice administered PBT one week before surgical resection of engrafted mammary tumors exhibited resistance to subsequent tumor re-challenge. Collectively, our results indicate that therapies targeting polyamine metabolism do not act exclusively as anti-proliferative agents, but also act strongly to prevent immune escape by the tumor. PBT may offer a general approach to heighten immune responses in cancer.
Most tumors maintain elevated levels of polyamines to support their growth and survival. This study explores the anti-tumor effect of polyamine starvation via both inhibiting polyamine biosynthesis and blocking the upregulated import of polyamines into the tumor. We demonstrate that polyamine blockade therapy (PBT) co-treatment with both DFMO and a novel polyamine transport inhibitor, Trimer PTI, significantly inhibits tumor growth more than treatment with DFMO or the Trimer PTI alone. The anti-tumor effect of PBT was lost in mice where CD4+ and CD8+ T cells were antibody depleted, implying that PBT stimulates an anti-tumor immune effect that is T-cell dependent. The PBT anti-tumor effect was accompanied by an increase in granzyme B+, IFN-γ+ CD8+ T-cells and a decrease in immunosuppressive tumor infiltrating cells including Gr-1+CD11b+ myeloid derived suppressor cells (MDSCs), CD4+CD25+ Tregs, and CD206+F4/80+ M2 macrophages. Stimulation with tumor-specific peptides elicited elevated antigen-specific IFN-γ secretion in splenocytes from PBT-treated mice, indicating that PBT treatment stimulates the activation of T-cells in a tumor-specific manner. These data show that combined treatment with both DFMO and the Trimer PTI not only deprives polyamine-addicted tumor cells of polyamines, but also relieves polyamine-mediated immunosuppression in the tumor microenvironment, thus allowing the activation of tumoricidal T-cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.