This report confirms the findings of the Intergroup 00-99 Trial and demonstrates its applicability to endemic NPC. This study also confirms that chemotherapy improves the distant metastasis control rate in NPC.
The molecular pathogenesis of natural killer/T-cell lymphoma (NKTCL) is not well understood. We conducted whole-exome sequencing and identifi ed Janus kinase 3 (JAK3) somatic-activating mutations (A572V and A573V) in 2 of 4 patients with NKTCLs. Further validation of the prevalence of JAK3 mutations was determined by Sanger sequencing and high-resolution melt (HRM) analysis in an additional 61 cases. In total, 23 of 65 (35.4%) cases harbored JAK3 mutations. Functional characterization of the JAK3 mutations support its involvement in cytokine-independent JAK/ STAT constitutive activation leading to increased cell growth. Moreover, treatment of both JAK3-mutant and wild-type NKTCL cell lines with a novel pan-JAK inhibitor, CP-690550, resulted in dose-dependent reduction of phosphorylated STAT5, reduced cell viability, and increased apoptosis. Hence, targeting the deregulated JAK/STAT pathway could be a promising therapy for patients with NKTCLs.
SIGNIFICANCE:Gene mutations causing NKTCL have not been fully identifi ed. Through exome sequencing, we identifi ed activating mutations of JAK3 that may play a signifi cant role in the pathogenesis of NKTCLs. Our fi ndings have important implications for the management of patients with NKTCLs.Cancer Discov; 2(7); 591-7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.