Yeast surface display libraries of human IgG1 Fc regions were prepared in which loop sequences at the C-terminal tip of the CH3 domain were randomized. A high percentage of these library members bound to soluble CD64 and Protein A indicating that the randomization step did not grossly interfere with the overall structure of the displayed Fc. Sorting these libraries by FACS for binders against HER2/neu yielded antigen-specific Fc binders (Fcab; Fc antigen binding) of which one was affinity matured, resulting in Fcab clone H10-03-6 which showed >10-fold improvement in antigen-binding activity versus the parental clone. Pre-equilibrium surface plasmon resonance experiments revealed a K(D) value of 69 nM. H10-03-6 did not react with other members of the HER family and specifically interacted with HER2-positive but not with HER2-negative cells. Importantly, Fcab H10-03-6 elicited potent antibody-dependent cellular cytotoxicity in vitro. Finally, the in vivo half-life in mice was similar to wild-type Fc indicating that the amino acid changes in the CH3 domain did not affect the pharmacokinetic behavior of the recombinant Fc. Our data demonstrate that the Fcab scaffold combines all features of normal antibodies in a small 50 kD homodimeric protein: antigen binding, effector functions and long half-life in vivo.
Recent studies have demonstrated that the reduction of the core fucosylation on N-glycans of human IgGs is responsible for a clearly enhanced antibody-dependent cellular cytotoxicity (ADCC). This finding might give access to improved active therapeutic antibodies. Here, the expression of the tumor antigen-specific antibody IGN311 was performed in a glyco-optimized strain of the moss Physcomitrella patens. Removal of plant specific N-glycan structures in this plant expression host was achieved by targeted knockout of corresponding genes and included quantitative elimination of core fucosylation. Antibodies transiently expressed and secreted by such genetically modified moss protoplasts assembled correctly, showed an unaltered antigen-binding affinity and, in extensive tests, revealed an up to 40-fold enhanced ADCC. Thus, the glyco-engineered moss-based transient expression platform combines a rapid technology with the subsequent analysis of glycooptimized therapeutics with regard to advanced properties.
We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted.
The aim of the present study was to produce glycosylation variants of the therapeutic Lewis Y-specific humanized IgG1 antibody IGN311 to enhance cell-killing effector function. This was achieved via genetic engineering of the glycosylation machinery of the antibody-producing host. Antibody genes were transiently cotransfected with acetyl-glycosaminyltransferase-III genes into human embryonic kidney-EBV nuclear antigen cells. A control wild-type antibody, IGN311wt, was expressed in the same host using identical expression vectors, but without cotransfection of genes for acetyl-glycosaminyltransferase-III expression. Both expression products were purified to homogeneity and characterized. The glyco-engineered expression product (IGN312-Glyco-I) showed a remarkably homogenous N-linked glycosylation pattern consisting of one major hybrid-type, non-fucosylated and agalactosylated form carrying a bisecting GlcNAc-group. Wild-type expression product (IGN311wt) on the other hand was glycosylated by a multitude of different core-fucosylated complex-type structures of variable degrees of galactosylation. Target affinity of the glyco-engineered antibody as well as heavy and light chain assembly were not affected by acetyl-glycosaminyltransferase-III expression. In vitro experiments showed a approximately 10-fold increase of antibody-dependent cellular cytotoxicity of the glyco-engineered antibody using different Lewis Y-positive target cancer cell lines (SK-BR-3, SK-BR-5, OVCAR-3, and Kato-III). Complement-mediated cytotoxicity of IGN312-Glyco-I was 0.4-fold reduced using SK-BR-5 as target cell line. The reduction of complement activation could be prevented and even converted into a slight increase of activity by using a different molecular-biological approach directing the glycosylation towards increased levels of complex N-linked oligosaccharides of bisected, non-fucosylated type, as a result of cotransfection of mannosidase II together with acetyl-glycosaminyltransferase-III.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.