The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
Long-read and strand-specific sequencing technologies together facilitate the de novo assembly of high-quality haplotype-resolved human genomes without parent–child trio data. We present 64 assembled haplotypes from 32 diverse human genomes. These highly contiguous haplotype assemblies (average contig N50: 26 Mbp) integrate all forms of genetic variation even across complex loci. We identify 107,590 structural variants (SVs), of which 68% are not discovered by short-read sequencing, and 278 SV hotspots (spanning megabases of gene-rich sequence). We characterize 130 of the most active mobile element source elements and find that 63% of all SVs arise by homology-mediated mechanisms. This resource enables reliable graph-based genotyping from short reads of up to 50,340 SVs, resulting in the identification of 1,526 expression quantitative trait loci as well as SV candidates for adaptive selection within the human population.
Learning product representations that reflect complementary relationship plays a central role in e-commerce recommender system. In the absence of the product relationships graph, which existing methods rely on, there is a need to detect the complementary relationships directly from noisy and sparse customer purchase activities. Furthermore, unlike simple relationships such as similarity, complementariness is asymmetric and non-transitive. Standard usage of representation learning emphasizes on only one set of embedding, which is problematic for modelling such properties of complementariness.We propose using knowledge-aware learning with dual product embedding to solve the above challenges. We encode contextual knowledge into product representation by multi-task learning, to alleviate the sparsity issue. By explicitly modelling with user bias terms, we separate the noise of customer-specific preferences from the complementariness. Furthermore, we adopt the dual embedding framework to capture the intrinsic properties of complementariness and provide geometric interpretation motivated by the classic separating hyperplane theory. Finally, we propose a Bayesian network structure that unifies all the components, which also concludes several popular models as special cases.The proposed method compares favourably to state-of-art methods, in downstream classification and recommendation tasks. We also develop an implementation that scales efficiently to a dataset with millions of items and customers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.