SummaryAntigen-presenting, major histocompatibility complex (MHC) class II-rich dendritic cells are known to arise from bone marrow. However, marrow lacks mature dendritic cells, and substantial numbers of proliferating less-mature cells have yet to be identified. The methodology for inducing dendritic cell growth that was recently described for mouse blood now has been modified to MHC class II-negative precursors in marrow. A key step is to remove the majority of nonadherent, newly formed granulocytes by gentle washes during the first 2-4 d of culture. This leaves behind proliferating clusters that are loosely attached to a more firmly adherent "stroma." At days 4-6 the clusters can be dislodged, isolated by 1-g sedimentation, and upon recuhure, large numbers of dendritic cells are released. The latter are readily identified on the basis of their distinct cell shape, ultrastructure, and repertoire of antigens, as detected with a panel of monoclonal antibodies. The dendritic cells express high levels of MHC class II products and act as powerful accessory cells for initiating the mixed leukocyte reaction. Neither the clusters nor mature dendritic cells are generated if macrophage colony-stimulating factor rather than granulocyte/macrophage colonystimulating factor (GM-CSF) is applied. Therefore, GM-CSF generates all three lineages of myeloid cells (granulocytes, macrophages, and dendritic cells). Since >5 x 10 6 dendritic cells develop in 1 wk from precursors within the large hind limb bones of a single animal, marrow progenitors can act as a major source of dendritic cells. This feature should prove useful for future molecular and clinical studies of this otherwise trace cell type.
OBJECTIVE-We hypothesized that the induction of heme oxygenase (HO)-1 and increased HO activity, which induces arterial antioxidative enzymes and vasoprotection in a mouse and a rat model of diabetes, would ameliorate insulin resistance, obesity, and diabetes in the ob mouse model of type 2 diabetes.RESEARCH DESIGN AND METHODS-Lean and ob mice were intraperitoneally administered the HO-1 inducer cobalt protoporphyrin (3 mg/kg CoPP) with and without the HO inhibitor stannous mesoporphyrin (2 mg/100 g SnMP) once a week for 6 weeks. Body weight, blood glucose, and serum cytokines and adiponectin were measured. Aorta, adipose tissue, bone marrow, and mesenchymal stem cells (MSCs) were isolated and assessed for HO expression and adipogenesis.RESULTS-HO activity was reduced in ob mice compared with age-matched lean mice. Administration of CoPP caused a sustained increase in HO-1 protein, prevented weight gain, decreased visceral and subcutaneous fat content (P Ͻ 0.03 and 0.01, respectively, compared with vehicle animals), increased serum adiponectin, and decreased plasma tumor necrosis factor-␣ (TNF-␣), interleukin (IL)-6, and IL-1 levels (P Ͻ 0.05). HO-1 induction improved insulin sensitivity and glucose tolerance and decreased insulin levels. Upregulation of HO-1 decreased adipogenesis in bone marrow in vivo and in cultured MSCs and increased adiponectin levels in the culture media. Inhibition of HO activity decreased adiponectin and increased secretion of TNF-␣, IL-6, and IL-1 levels in ob mice.CONCLUSIONS-This study provides strong evidence for the existence of an HO-1-adiponectin regulatory axis that can be manipulated to ameliorate the deleterious effects of obesity and the metabolic syndrome associated with cardiovascular disease and diabetes. Diabetes 57:1526-1535, 2008
SummaryB7-2 is a recently discovered, second ligand for the CTLA-4/CD28, T cell signaling system. Using the GL-1 rat monoclonal antibody (mAb), we monitored expression of B7-2 on mouse leukocytes with an emphasis on dendritic cells. By cytofluorography, little or no B7-2 was detected on most cell types isolated from spleen, thymus, peritoneal cavity, skin, marrow, and blood. However, expression of B7-2 could be upregulated in culture. In the case of epidermal and spleen dendritic cells, which become highly immunostimulatory for T cells during a short period of culture, the upregulation of B7-2 was dramatic and did not require added stimuli. Lipopolysaccharide did not upregulate B7-2 levels on dendritic cells, in contrast to macrophages and B cells. By indirect immunolabeling, the level of staining with GL-1 mAb exceeded that seen with rat mAbs to several other surface molecules including intercellular adhesion molecule 1, B7-1, CD44, and CD45, as well as new hamster mAbs to CD40, CD48, and B7-1/CD80. Of these accessory molecules, B7-2 was a major species that increased in culture, implying a key role for B7-2 in the functional maturation of dendritic cells. B7-2 was the main (>90%) CTLA-4 ligand on mouse dendritic cells. When we applied GL-1 to tissue sections of a dozen different organs, clear-cut staining with B7-2 antigen was found in many. B7-2 staining was noted on liver Kupffer cells, interstitial cells of heart and lung, and profiles in the submucosa of the esophagus. B7-2 staining was minimal in the kidney and in the nonlymphoid regions of the gut, and was not observed at all in the brain. In the tongue, only rare dendritic cells in the oral epithelium were B7-2 + , but reactive cells were scattered about the interstitial spaces of the muscle. In all lymphoid tissues, GI-1 strongly stained certain distinct regions that are occupied by dendritic cells and by macrophages. For dendritic cells, these include the thvmic medulla, splenic periarterial sheaths, and lymph node deep cortex; for macrophages, the B7-2-rich regions included the splenic marginal zone and lymph node subcapsular cortex. Splenic B7-2 + cells were accessible to labeling with GL-1 mAb given intravenously. Dendritic cell stimulation of T cells (DNA synthesis) during the mixed leukocyte reaction was significantly (35-65%) blocked by GL-1. The block could be enhanced by adding 1G10 anti-B7-1 or by using CTLA-4 Ig, a ligand for both B7-1 and B7-2. We conclude that B7-2, like other accessory molecules, is expressed by many types of antigen-presenting cells. However, the regulation and extent of B7-2 expression seems to differ among cell types. Dendritic cells express very high levels, in several sites in vivo and after maturation into strong accessory cells in culture. CD28 and CTLA-4 are closely related molecules (1, 2) that are expressed on most T cells. CD28 was first identified using monoclonals that were comparably mitogenic to anti-TCR mAbs, when administered together with PMA (3-5). The simultaneous triggering of CD28/CTLA-4 and CD3/TCR,...
Intractable autoimmune diseases in chimeric resistant MRL/lpr mice were treated by a new bone marrow transplantation (BMT) method consisting of fractionated irradiation, 5.5 Gy ؋ 2, followed by intrabone marrow (IBM) injection of whole bone marrow cells (BMCs) from allogeneic normal C57BL/6 (B6) mice (5.5 Gy ؋ 2 ؉ IBM). In MRL/lpr mice treated with this method, the number of donor-derived cells in the bone marrow, spleen, and liver rapidly increased (almost 100% donor-derived cells by 14 days after the treatment), and the number of donorderived hemopoietic progenitor cells concomitantly increased. Furthermore, donorderived stromal cells were clearly detected in the cultured bone pieces from MRL/lpr mice treated with 5.5 Gy ؋ 2 ؉ IBM. All the recipients thus treated survived more than 1 year (> 60 weeks after birth) and remained free from autoimmune diseases. Autoantibodies decreased to almost normal levels, and abnormal T cells (
We have found a new spontaneous autosomal recessive mutation in mice that causes a systemic absence of lymph nodes and Peyer's patches. The name "alymphoplasia", with the gene symbol "aly", is proposed for this mutant. The spleen of aly/aly mice is devoid of well-defined lymphoid follicles, and the thymus does not show a clear cortical-medullary distinction. The mutant homozygotes are deficient in both humoral and cell-mediated immune functions, and are highly susceptible to infections. They have a reduced level of IgM and severely depressed levels of IgG and IgA in their sera, and do not reject allogeneic skin grafts. However, they have mature T and B cells as determined from their cell surface antigens. The results of bone marrow transplantation experiments suggest a mesenchymal disorder as a possible cause of the lack of lymph nodes and of immunodeficiency in the aly mouse. The aly mutant mouse may be a useful animal model of primary immunodeficiency, as are the nu (nude) and scid (severe combined immunodeficiency) mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.