Ras proteins participate as a molecular switch in the early steps of the signal transduction pathway that is associated with cell growth and differentiation. When the protein is in its GTP complexed form it is active in signal transduction, whereas it is inactive in its GDP complexed form. A comparison of eight three-dimensional structures of ras proteins in four different crystal lattices, five with a nonhydrolyzable GTP analog and three with GDP, reveals that the "on" and "off" states of the switch are distinguished by conformational differences that span a length of more than 40 A, and are induced by the gamma-phosphate. The most significant differences are localized in two regions: residues 30 to 38 (the switch I region) in the second loop and residues 60 to 76 (the switch II region) consisting of the fourth loop and the short alpha-helix that follows the loop. Both regions are highly exposed and form a continuous strip on the molecular surface most likely to be the recognition sites for the effector and receptor molecule(or molecules). The conformational differences also provide a structural basis for understanding the biological and biochemical changes of the proteins due to oncogenic mutations, autophosphorylation, and GTP hydrolysis, and for understanding the interactions with other proteins.
Cyclin D‐Cdk4/6 and cyclin A/E‐Cdk2 are suggested to be involved in phosphorylation of the retinoblastoma protein (pRB) during the G1/S transition of the cell cycle. However, it is unclear why several Cdks are needed and how they are different from one another. We found that the consensus amino acid sequence for phosphorylation by cyclin D1‐Cdk4 is different from S/T‐P‐X‐K/R, which is the consensus sequence for phosphorylation by cyclin A/E‐Cdk2 using various synthetic peptides as substrates. Cyclin D1‐Cdk4 efficiently phosphorylated the G1 peptide, RPPTLS780PIPHIPR that contained a part of the sequence of pRB, while cyclins E‐Cdk2 and A‐Cdk2 did not. To determine the phosphorylation state of pRB in vitro and in vivo, we raised the specific antibody against phospho‐Ser780 in pRB. We confirmed that cyclin D1‐Cdk4, but not cyclin E‐Cdk2, phosphorylated Ser780 in recombinant pRB. The Ser780 in pRB was phosphorylated in the G1 phase in a cell cycle‐dependent manner. Furthermore, we found that pRB phosphorylated at Ser780 cannot bind to E2F‐1 in vivo. Our data show that cyclin D1‐Cdk4 and cyclin A/E Cdk2 phosphorylate different sites of pRB in vivo.
Substrate specificities of FPG protein (also known as formamidopyrimidine DNA glycosylase) and 8-hydroxyguanine endonuclease were compared by using defined duplex oligodeoxynucleotides containing single residues of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxodA), and 2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimidine (Me-Fapy). Duplexes containing 8-oxodG positioned opposite dC, dG, or dT were cleaved, whereas single-stranded DNA and duplexes containing 8-oxodGdA or 8-oxodA positioned opposite any of the four DNA bases were relatively resistant. Both enzymes cut duplexes containing 8-oxoG-dC 3' and 5' to the modified base but failed to cleave duplex DNA containing synthetic abasic sites, mismatches containing dG, or unmodified DNA. 8-Oxoguanine, identified by HPLC-electrochemical detection techniques, was released during the enzymatic reaction. Apparent Km values for FPG protein acting on duplex substrates containing a single Me-Fapy or 8-oxodG residue positioned opposite dC were 41 and 8 nM, respectively, and those for 8-hydroxyguanine endonuclease were 30 and 13 nM, respectively. Comparison of the properties of the two enzyme activities suggest that they are identical. In view of the widespread distribution of 8-oxodG in cellular DNA, the demonstrated miscoding and mutagenic properties of this lesion, and the existence of a bacterial gene coding for FPG protein, we propose that 8-oxodG DNA is the primary physiological substrate for a constituent glycosylase found in bacteria and mammalian cells.Active oxygen species, generated by ionizing radiation and by endogenous oxidation processes, react with deoxyguanosine (dG) residues in DNA to form 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) (reviewed in ref.
8-Hydroxydeoxyguanosine (8-OH-dG) was detected in DNA isolated from HeLa cells after the cells in tissue culture had been irradiated with X-rays and from the liver of mice after the whole animals had been irradiated with gamma-rays. The amounts of 8-OH-dG in DNA after in vivo irradiation were three orders of magnitude lower than those after in vitro irradiation (0.008-0.032 8-OH-dG residue/10(5) dG/krad). The 8-OH-dG produced in liver DNA by irradiation of mice decreased with time, suggesting the presence of a repair enzyme(s) acting on 8-OH-dG in mouse liver. Treatment of Salmonella typhimurium cells with hydrogen peroxide also caused increase in the 8-OH-dG content. These results indicate that 8-OH-dG is formed in vivo in cellular DNA on treatment with various oxygen radical-producing agents and that it is repairable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.