SummaryThis study investigates the molecular mechanisms underlying the induction of and protection from T cell activation-associated hepatic injury. When BALB/c mice were given a single intravenous injection of concanavalin A (Con A) (>10.3 rag/mouse), they developed acute hepatic injury as assessed by a striking increase in plasma transaminase levels within 24 h. Histopathologically, only the liver was injured while moderate infiltration of T cells and polymorphonuclear cells occurred in the portal areas and around the central veins. The induction of hepatic injury was dependent on the existence as well as the activation of T cells, as untreated BALB/c nu/nu mice or BALB/c mice pretreated with a T cell-specific immunosuppressive drug, FK506, failed to develop disease. Significant increases in the levels of various cytokines in the plasma were detected before an increase in plasma transaminase levels. Within 1 h after Con A injection, tumor necrosis factor (TNF) levels peaked, this being followed by production of two other inflammatory cytokines, interleukin 6 (IL-6) and IL-1. Passive immunization with anti-TNF but not with anti-IL-1 or anti-IL-6 antibody, conferred significant levels of protection. Moreover, administration of rlL-6 before Con A injection resulted in an IL-6 dose-dependent protection. A single administration of a given dose of rlL-6 completely inhibited the release of transaminases, whereas the same regimen induced only 40-50% inhibition of TNF production. More than 80% inhibition of TNF production required four consecutive rlL-6 injections. These results indicate that: (a) TNFs are critical cytokines for inducing T cell activation-associated (Con A-induced) hepatitis; (b) the induction of hepatitis is almost completely controlled by rlL-6; and (c) rlL-6 exerts its protective effect through multiple mechanisms including the reduction of TNF production.
The OX40 (CD134) molecule is induced primarily during T cell activation and, as we show in this study, is also expressed on CD25+CD4+ regulatory T (Treg) cells. A necessary role for OX40 in the development and homeostasis of Treg cells can be inferred from the reduced numbers of the cells present in the spleens of OX40-deficient mice, and their elevated numbers in the spleens of mice that overexpress the OX40 ligand (OX40L). The homeostatic proliferation of Treg cells following transfer into lymphopenic mice was also found to be potentiated by the OX40-OX40L interaction. Suppression of T cell responses by Treg cells was significantly impaired in the absence of OX40, indicating that, in addition to its homeostatic functions, OX40 contributes to efficient Treg-mediated suppression. However, despite this, we found that CD25−CD4+ T cells became insensitive to Treg-mediated suppression when they were exposed to OX40L-expressing cells, or when they were treated with an agonistic OX40-specific mAb. OX40 signaling could also abrogate the disease-preventing activity of Treg cells in an experimental model of inflammatory bowel disease. Thus, although the data reveal important roles for OX40 signaling in Treg cell development, homeostasis, and suppressive activity, they also show that OX40 signals can oppose Treg-mediated suppression when they are delivered directly to Ag-engaged naive T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.