Background: All previously reported eukaryotic nuclear genome sequences have been incomplete, especially in highly repeated units and chromosomal ends. Because repetitive DNA is important for many aspects of biology, complete chromosomal structures are fundamental for understanding eukaryotic cells. Our earlier, nearly complete genome sequence of the hot-spring red alga Cyanidioschyzon merolae revealed several unique features, including just three ribosomal DNA copies, very few introns, and a small total number of genes. However, because the exact structures of certain functionally important repeated elements remained ambiguous, that sequence was not complete. Obviously, those ambiguities needed to be resolved before the unique features of the C. merolae genome could be summarized, and the ambiguities could only be resolved by completing the sequence. Therefore, we aimed to complete all previous gaps and sequence all remaining chromosomal ends, and now report the first nuclear-genome sequence for any eukaryote that is 100% complete.
The general consensus is that a cyanobacterium phagocytosed by a host cell evolved into the plastids of red and green algae, land plants, and glaucophytes. In contrast to the plastids of glaucophytes, which retain a cyanobacterial-type peptidoglycan layer,
SummaryEnzymes encoded by bacterial MurE genes catalyze the ATP-dependent formation of uridine diphosphate-Nacetylmuramic acid-tripeptide in bacterial peptidoglycan biosynthesis. The Arabidopsis thaliana genome contains one gene with homology to the bacterial MurE:AtMurE. Under normal conditions AtMurE is expressed in leaves and flowers, but not in roots or stems. Sequence-based predictions and analyses of GFP fusions of the N terminus of AtMurE, as well as the full-length protein, suggest that AtMurE localizes to plastids. We identified three T-DNA-tagged and one Ds-tagged mutant alleles of AtMurE in A. thaliana. All four alleles show a white phenotype, and A. thaliana antisense AtMurE lines showed a pale-green phenotype. These results suggest that AtMurE is involved in chloroplast biogenesis. Cells of the mutants were inhibited in thylakoid membrane development. RT-PCR analysis of the mutant lines suggested that the expression of genes that depend on a multisubunit plastid-encoded RNA polymerase was decreased. To analyze the functional relationships between the MurE genes of cyanobacteria, the moss Physcomitrella patens and higher plants, a complementation assay was carried out with a P. patens (Pp) MurE knock-out line, which exhibits a small number of macrochloroplasts per cell. Although the Anabaena MurE, fused with the N-terminal region of PpMurE, complemented the macrochloroplast phenotype in P. patens, transformation with AtMurE did not complement this phenotype. These results suggest that AtMurE is functionally divergent from the bacterial and moss MurE proteins.
It is believed that the plastids in green plants lost peptidoglycan (i.e., a bacterial cell wall-containing D-amino acids) during their evolution from an endosymbiotic cyanobacterium. Although wall-like structures could not be detected in the plastids of green plants, the moss Physcomitrella patens has the genes required to generate peptidoglycan (Mur genes), and knocking out these genes causes defects in chloroplast division. Here, we generated P. patens knockout lines (ΔPp-ddl) for a homolog of the bacterial peptidoglycan-synthetic gene encoding D-Ala:D-Ala ligase. ΔPp-ddl had a macrochloroplast phenotype, similar to other Mur knockout lines. The addition of D-Ala-D-Ala (DA-DA) to the medium suppressed the appearance of giant chloroplasts in ΔPp-ddl, but the addition of L-Ala-L-Ala (LA-LA), DA-LA, LA-DA, or D-Ala did not. Recently, a metabolic method for labeling bacterial peptidoglycan was established using ethynyl-DA-DA (EDA-DA) and click chemistry to attach an azidemodified fluorophore to the ethynyl group. The ΔPp-ddl line complemented with EDA-DA showed that moss chloroplasts are completely surrounded by peptidoglycan. Our findings strongly suggest that the moss plastids have a peptidoglycan wall containing D-amino acids. By contrast, no plastid phenotypes were observed in the T-DNA tagged ddl mutant lines of Arabidopsis thaliana.
A novel extracellular Mn-superoxide dismutase (SOD) was isolated from a moss, Barbula unguiculata. The SOD was a glycoprotein; the apparent molecular mass of its native form was 120 kDa, as estimated by gel filtration chromatography, and that of its monomer was 22,072 Da, as estimated by time of flight mass spectroscopy. The protein had manganese with a stoichiometry of 0.80 Mn/monomer. The cDNA clone for a gene encoding the extracellular Mn-SOD was isolated. Sequence analysis showed that it has a strong similarity to germin (oxalate oxidase) and germin-like proteins (GLPs) of several plant species and possesses all the characteristic features of members of the germin family. The clone encoding this extracellular Mn-SOD was therefore designated B. unguiculata GLP (BuGLP). BuGLP had no oxalate oxidase activity. In addition, the cDNA for a gene encoding the moss mitochondrial Mn-SOD was isolated. Its amino acid sequence had little similarity to that of BuGLP, even though a close similarity was observed among the mitochondrial Mn-SODs of various organisms. BuGLP was the first germin-like protein that was really demonstrated to be a metalloprotein with Mn-SOD activity but no oxalate oxidase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.