Compelling evidence suggests that the transcription factor Foxp3 acts as a master switch governing the development and function of CD4+ regulatory T cells (Tregs). However, whether transcriptional control of Foxp3 expression itself contributes to the development of a stable Treg lineage has thus far not been investigated. We here identified an evolutionarily conserved region within the foxp3 locus upstream of exon-1 possessing transcriptional activity. Bisulphite sequencing and chromatin immunoprecipitation revealed complete demethylation of CpG motifs as well as histone modifications within the conserved region in ex vivo isolated Foxp3+CD25+CD4+ Tregs, but not in naïve CD25−CD4+ T cells. Partial DNA demethylation is already found within developing Foxp3+ thymocytes; however, Tregs induced by TGF-β in vitro display only incomplete demethylation despite high Foxp3 expression. In contrast to natural Tregs, these TGF-β–induced Foxp3+ Tregs lose both Foxp3 expression and suppressive activity upon restimulation in the absence of TGF-β. Our data suggest that expression of Foxp3 must be stabilized by epigenetic modification to allow the development of a permanent suppressor cell lineage, a finding of significant importance for therapeutic applications involving induction or transfer of Tregs and for the understanding of long-term cell lineage decisions.
The transcription factor FOXP3 is critical for development and function of regulatory T cells (Treg). Their number and functioning appears to be crucial in the prevention of autoimmunity and allergy, but also to be a negative prognostic marker for various solid tumors. Although expression of the transcription factor FOXP3 currently constitutes the best-known marker for Treg, in humans, transient expression is also observed in activated non-Treg. Extending our recent findings for the murine foxp3 locus, we observed epigenetic modification of several regions in the human FOXP3 locus exclusively occurring in Treg. Importantly, activated conventional CD4 + T cells and TGF-b-treated cells displayed no FOXP3 DNA demethylation despite expression of FOXP3, whereas subsets of Treg stable even upon extended in vitro expansion remained demethylated. To investigate whether a whole set of genes might be epigenetically imprinted in the Treg lineage, we conducted a genome-wide differential methylation hybridization analysis. Several genes were found displaying differential methylation between Treg and conventional Tcells, but none beside FOXP3 turned out to be entirely specific toTreg when tested on a broad panel of cells and tissues. We conclude that FOXP3 DNA demethylation constitutes the most reliable criterion for natural Treg available at present.
Regulatory T cells (Tregs) constitute an attractive therapeutic target given their essential role in controlling autoimmunity. However, recent animal studies provide evidence for functional heterogeneity and lineage plasticity within the Treg compartment. To understand better the plasticity of human Tregs in the context of type 1 diabetes, we characterized an IFN-γ–competent subset of human CD4+CD127lo/−CD25+ Tregs. We measured the frequency of Tregs in the peripheral blood of patients with type 1 diabetes by epigenetic analysis of the Treg-specific demethylated region (TSDR) and the frequency of the IFN-γ+ subset by flow cytometry. Purified IFN-γ+ Tregs were assessed for suppressive function, degree of TSDR demethylation, and expression of Treg lineage markers FOXP3 and Helios. The frequency of Tregs in peripheral blood was comparable but the FOXP3+IFN-γ+ fraction was significantly increased in patients with type 1 diabetes compared to healthy controls. Purified IFN-γ+ Tregs expressed FOXP3 and possessed suppressive activity but lacked Helios expression and were predominately methylated at the TSDR, characteristics of an adaptive Treg. Naive Tregs were capable of upregulating expression of Th1-associated T-bet, CXCR3, and IFN-γ in response to IL-12. Notably, naive, thymic-derived natural Tregs also demonstrated the capacity for Th1 differentiation without concomitant loss of Helios expression or TSDR demethylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.