Chromosome 22, particularly band 22q11.2, is predisposed to rearrangements due to misalignments of low-copy repeats (LCRs). DiGeorge/velocardiofacial syndrome (DG/VCFS) is a common disorder resulting from microdeletion within the same band. Although both deletion and duplication are expected to occur in equal proportions as reciprocal events caused by LCR-mediated rearrangements, very few microduplications have been identified. We have identified 13 cases of microduplication 22q11.2, primarily by interphase fluorescence in situ hybridization (FISH). The size of the duplications, determined by FISH probes from bacterial artificial chromosomes and P(1) artificial chromosomes, range from 3-4 Mb to 6 Mb, and the exchange points seem to involve an LCR. Molecular analysis based on 15 short tandem repeats confirmed the size of the duplications and indicated that at least 1 of 15 loci has three alleles present. The patients' phenotypes ranged from mild to severe, sharing a tendency for velopharyngeal insufficiency with DG/VCFS but having other distinctive characteristics, as well. Although the present series of patients was ascertained because of some overlapping features with DG/VCF syndromes, the microduplication of 22q11.2 appears to be a new syndrome.
Campomelic dysplasia (CD) is a semilethal skeletal malformation syndrome with or without XY sex reversal. In addition to the multiple mutations found within the sex-determining region Y-related high-mobility group box gene (SOX9) on 17q24.3, several chromosome anomalies (translocations, inversions, and deletions) with breakpoints scattered over 1 Mb upstream of SOX9 have been described. Here, we present a balanced translocation, t(4;17)(q28.3;q24.3), segregating in a family with a mild acampomelic CD with Robin sequence. Both chromosome breakpoints have been identified by fluorescence in situ hybridization and have been sequenced using a somatic cell hybrid. The 17q24.3 breakpoint maps approximately 900 kb upstream of SOX9, which is within the same bacterial artificial chromosome clone as the breakpoints of two other reported patients with mild CD. We also report a prenatal identification of acampomelic CD with male-to-female sex reversal in a fetus with a de novo balanced complex karyotype, 46,XY,t(4;7;8;17)(4qter-->4p15.1::17q25.1-->17qter;7qter-->7p15.3::4p15.1-->4pter;8pter-->8q12.1::7p15.3-->7pter;17pter-->17q25.1::8q12.1-->8qter). Surprisingly, the 17q breakpoint maps approximately 1.3 Mb downstream of SOX9, making this the longest-range position effect found in the field of human genetics and the first report of a patient with CD with the chromosome breakpoint mapping 3' of SOX9. By using the Regulatory Potential score in conjunction with analysis of the rearrangement breakpoints, we identified a candidate upstream cis-regulatory element, SOX9cre1. We provide evidence that this 1.1-kb evolutionarily conserved element and the downstream breakpoint region colocalize with SOX9 in the interphase nucleus, despite being located 1.1 Mb upstream and 1.3 Mb downstream of it, respectively. The potential molecular mechanism responsible for the position effect is discussed.
Rothmund-Thomson syndrome (RTS), an autosomal recessive disorder, comprises poikiloderma, growth deficiency, some aspects of premature aging, and a predisposition to malignancy, especially osteogenic sarcomas. Two kindreds with RTS were recently shown to segregate for mutations in the human RECQL4 helicase gene. We report identification of a new RTS kindred in which both brothers developed osteosarcomas. Mutation analysis of the RECQL4 gene was performed on both brothers and both parents. The brothers were shown to be compound heterozygotes for mutations in the RECQL4 gene, including a single basepair deletion in exon 9 resulting in a frameshift and early termination codon and a base substitution in the 3-prime splice site in the intron-exon boundary of exon 8, which would be predicted to cause a deletion of at least part of a consensus helicase domain. Each parent was shown to be a heterozygote carrier for one mutation. This report strengthens the association between mutations in RECQL4 helicase gene and RTS. Two other recessive disorders, Bloom syndrome and Werner syndrome, are known to be due to other human RECQ helicase gene mutations. These three disorders all manifest abnormal growth, premature aging, and predisposition to site-specific malignancies. The clinical and molecular aspects of RTS, Bloom syndrome, and Werner syndrome are compared and contrasted.
Karyotype analysis by chromosome banding is the standard method for identifying numerical and structural chromosomal aberrations in pre- and postnatal cytogenetics laboratories. However, the chromosomal origins of markers, subtle translocations, or complex chromosomal rearrangements are often difficult to identify with certainty. We have developed a novel karyotyping technique, termed spectral karyotyping (SKY), which is based on the simultaneous hybridization of 24 chromosome-specific painting probes labeled with different fluorochromes or fluorochrome combinations. The measurement of defined emission spectra by means of interferometer-based spectral imaging allows for the definitive discernment of all human chromosomes in different colors. Here, we report the comprehensive karyotype analysis of 16 samples from different cytogenetic laboratories by merging conventional cytogenetic methodology and spectral karyotyping. This approach could become a powerful tool for the cytogeneticists, because it results in a considerable improvement of karyotype analysis by identifying chromosomal aberrations not previously detected by G-banding alone. Advantages, limitations, and future directions of spectral karyotyping are discussed.
Introduction:The use of chromosome analysis on products of conception from spontaneous abortions is recommended to identify a genetic etiology. However, 20% of products of conception cultures are unsuccessful due to microbial contamination or lack of viable dividing cells. Our laboratory implemented a reflex fluorescent in situ hybridization (FISH) assay to detect numeric chromosome abnormalities for unsuccessful cultures. Materials and Methods: All products of conception samples were simultaneously processed for both chromosome analysis and FISH analysis. If the chromosome analysis was unsuccessful, interphase FISH was performed for chromosomes 13,16,18,21,22, X, and Y. To assess the performance of the FISH assay, a 3-year retrospective comparative analysis of the FISH results versus chromosome results was performed. Results: Of 5555 total specimens, 4189 (75%) represented chorionic villi/fetal tissue and 1366 (25%) represented tissue of unidentified origin. Of the 1189 tissues of unidentified origin with chromosome or FISH results, 1096 (92%) were XX, indicating that the majority of these tissues are likely maternal in origin. Of the 3361 successful chromosome studies on the chorionic villi/fetal tissue specimens, 1734 (52%) samples had a chromosome abnormality. Of the 762 successful FISH studies on chorionic villi/fetal tissue specimens that were unsuccessful by chromosome studies, 181 (25%) had an abnormal result with the targeted FISH panel. Overall, the FISH panel detected approximately 70% of the chromosome abnormalities in products of conception detectable by karyotype. When the FISH panel results were combined with chromosome analysis for the 4189 chorionic villi/fetal tissue specimens, the overall abnormality rate is 47%. Conclusions: Our reflex FISH assay proved useful for the detection of common chromosome aneuploidies in products of conception samples that failed conventional chromosome analysis. Because of its limited view of the genome, cautious interpretation of FISH results is required for all samples, in particular, trisomy of an acrocentric chromosome, which may represent a Robertsonian translocation. An algorithmic approach to the genetic evaluation of products of conception specimens, with the potential for initial evaluation by a FISH panel, may be warranted. Genet Med 2011:13(6):545-552.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.