Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract of uncertain origin, which includes ulcerative colitis (UC) and Crohn’s disease (CD). The composition of gut microbiota may change in IBD affected individuals, but whether dysbiosis is the cause or the consequence of inflammatory processes in the intestinal tissue is still unclear. Here, the composition of the microbiota and the metabolites in stool of 183 subjects (82 UC, 50 CD, and 51 healthy controls) were determined. The metabolites content and the microbiological profiles were significantly different between IBD and healthy subjects. In the IBD group, Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria were significantly increased, whereas Bacteroidetes and Cyanobacteria were decreased. At genus level Escherichia, Faecalibacterium, Streptococcus, Sutterella and Veillonella were increased, whereas Bacteroides, Flavobacterium, and Oscillospira decreased. Various metabolites including biogenic amines, amino acids, lipids, were significantly increased in IBD, while others, such as two B group vitamins, were decreased in IBD compared to healthy subjects. This study underlines the potential role of an inter-omics approach in understanding the metabolic pathways involved in IBD. The combined evaluation of metabolites and fecal microbiome can be useful to discriminate between healthy subjects and patients with IBD.
The virus-encoded RNA-dependent RNA polymerase (RdRp) has emerged as a primary target in the search for selective inhibitors of Flaviviridae. Recently, we reported on the selective inhibition, in cell-based assays, of both BVDV (EC50 = 0.80 ± 0.06 μM) and HCV (EC50 = 1.11 ± 0.15 μM) by 2-{1-[2-(2,4-dimethoxyphenyl)-1H-benzimidazol-5-yl]ethylidene}hydrazinecarbothioamide (227G). Here we show that, in enzyme assays with recombinant enzymes, 227G inhibits, in a dose-dependent manner, the RdRp of both BVDV (IC50 = 0.0020 ± 0.0004 μM) and HCV (IC50 = 0.40 ± 0.04 μM). Furthermore, we report on the selection and molecular analysis of a BVDV-resistant mutant, characterized by the presence of the I261M mutation. By applying a multilevel computational approach, we identified different 227G binding sites on the two RdRps. They were further validated by the good agreement between the calculated affinities and those extrapolated from IC50 values. Our findings suggest different molecular mechanisms of inhibition of the HCV and BVDV RdRps by 227G and indicate the importance of understanding ligand-enzyme interactions at the molecular level for the rational design of new and more potent leads.
Background
Clustered protocadherins (
PCDHs
) map in tandem at human chromosome 5q31 and comprise three multi-genes clusters: α-, β- and γ-
PCDH
. The expression of this cluster consists of a complex mechanism involving DNA hub formation through DNA-CCTC binding factor (CTCF) interaction. Methylation alterations can affect this interaction, leading to transcriptional dysregulation. In cancer, clustered
PCDH
s undergo a mechanism of long-range epigenetic silencing by hypermethylation.
Results
In this study, we detected frequent methylation alterations at CpG islands associated to these clustered
PCDHs
in all the solid tumours analysed (colorectal, gastric and biliary tract cancers, pilocytic astrocytoma), but not hematologic neoplasms such as chronic lymphocytic leukemia. Importantly, several altered CpG islands were associated with CTCF binding sites. Interestingly, our analysis revealed a hypomethylation event in pilocytic astrocytoma, suggesting that in neuronal tissue, where
PCDH
s are highly expressed, these genes become hypomethylated in this type of cancer. On the other hand, in tissues where
PCDH
s are lowly expressed, these CpG islands are targeted by DNA methylation. In fact,
PCDH
-associated CpG islands resulted hypermethylated in gastrointestinal tumours.
Conclusions
Our study highlighted a strong alteration of the clustered
PCDHs
methylation pattern in the analysed solid cancers and suggested these methylation aberrations in the CpG islands associated with
PCDH
genes as powerful diagnostic biomarkers.
Electronic supplementary material
The online version of this article (10.1186/s13148-019-0695-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.