Digital data are anticipated to transform medicine. However, most of today’s medical data lack interoperability: hidden in isolated databases, incompatible systems and proprietary software, the data are difficult to exchange, analyze, and interpret. This slows down medical progress, as technologies that rely on these data – artificial intelligence, big data or mobile applications – cannot be used to their full potential. In this article, we argue that interoperability is a prerequisite for the digital innovations envisioned for future medicine. We focus on four areas where interoperable data and IT systems are particularly important: (1) artificial intelligence and big data; (2) medical communication; (3) research; and (4) international cooperation. We discuss how interoperability can facilitate digital transformation in these areas to improve the health and well-being of patients worldwide.
Background Emerging machine learning technologies are beginning to transform medicine and healthcare and could also improve the diagnosis and treatment of rare diseases. Currently, there are no systematic reviews that investigate, from a general perspective, how machine learning is used in a rare disease context. This scoping review aims to address this gap and explores the use of machine learning in rare diseases, investigating, for example, in which rare diseases machine learning is applied, which types of algorithms and input data are used or which medical applications (e.g., diagnosis, prognosis or treatment) are studied. Methods Using a complex search string including generic search terms and 381 individual disease names, studies from the past 10 years (2010–2019) that applied machine learning in a rare disease context were identified on PubMed. To systematically map the research activity, eligible studies were categorized along different dimensions (e.g., rare disease group, type of algorithm, input data), and the number of studies within these categories was analyzed. Results Two hundred eleven studies from 32 countries investigating 74 different rare diseases were identified. Diseases with a higher prevalence appeared more often in the studies than diseases with a lower prevalence. Moreover, some rare disease groups were investigated more frequently than to be expected (e.g., rare neurologic diseases and rare systemic or rheumatologic diseases), others less frequently (e.g., rare inborn errors of metabolism and rare skin diseases). Ensemble methods (36.0%), support vector machines (32.2%) and artificial neural networks (31.8%) were the algorithms most commonly applied in the studies. Only a small proportion of studies evaluated their algorithms on an external data set (11.8%) or against a human expert (2.4%). As input data, images (32.2%), demographic data (27.0%) and “omics” data (26.5%) were used most frequently. Most studies used machine learning for diagnosis (40.8%) or prognosis (38.4%) whereas studies aiming to improve treatment were relatively scarce (4.7%). Patient numbers in the studies were small, typically ranging from 20 to 99 (35.5%). Conclusion Our review provides an overview of the use of machine learning in rare diseases. Mapping the current research activity, it can guide future work and help to facilitate the successful application of machine learning in rare diseases.
Background The COVID-19 outbreak has affected the lives of millions of people by causing a dramatic impact on many health care systems and the global economy. This devastating pandemic has brought together communities across the globe to work on this issue in an unprecedented manner. Objective This case study describes the steps and methods employed in the conduction of a remote online health hackathon centered on challenges posed by the COVID-19 pandemic. It aims to deliver a clear implementation road map for other organizations to follow. Methods This 4-day hackathon was conducted in April 2020, based on six COVID-19–related challenges defined by frontline clinicians and researchers from various disciplines. An online survey was structured to assess: (1) individual experience satisfaction, (2) level of interprofessional skills exchange, (3) maturity of the projects realized, and (4) overall quality of the event. At the end of the event, participants were invited to take part in an online survey with 17 (+5 optional) items, including multiple-choice and open-ended questions that assessed their experience regarding the remote nature of the event and their individual project, interprofessional skills exchange, and their confidence in working on a digital health project before and after the hackathon. Mentors, who guided the participants through the event, also provided feedback to the organizers through an online survey. Results A total of 48 participants and 52 mentors based in 8 different countries participated and developed 14 projects. A total of 75 mentorship video sessions were held. Participants reported increased confidence in starting a digital health venture or a research project after successfully participating in the hackathon, and stated that they were likely to continue working on their projects. Of the participants who provided feedback, 60% (n=18) would not have started their project without this particular hackathon and indicated that the hackathon encouraged and enabled them to progress faster, for example, by building interdisciplinary teams, gaining new insights and feedback provided by their mentors, and creating a functional prototype. Conclusions This study provides insights into how online hackathons can contribute to solving the challenges and effects of a pandemic in several regions of the world. The online format fosters team diversity, increases cross-regional collaboration, and can be executed much faster and at lower costs compared to in-person events. Results on preparation, organization, and evaluation of this online hackathon are useful for other institutions and initiatives that are willing to introduce similar event formats in the fight against COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.