Serum autoantibodies against eye muscle antigens are closely linked with thyroid-associated ophthalmopathy (TAO), although their significance is unclear. The two antigens that are most often recognized are eye muscle membrane proteins with molecular masses of 55 and 64 kDa, as determined from immunoblotting with crude human or porcine eye muscle membranes. We cloned a fragment of the 55-kDa protein by screening an eye muscle expression library with affinity-purified anti-55 kDa protein antibody prepared from a TAO patient's serum. A complementary DNA (cDNA) encoding a novel protein, which we have called G2s, was sequenced on both strands, and its size was 411 bp. The open reading frame of G2s corresponded to a 121-amino acid peptide with a size of 1.4 kb. Using the rapid amplification of 5'-cDNA ends technique we were able to clone an additional 0.3 kb of the protein. G2s did not share significant homologies with any other entered protein in computer databases and had one putative transmembrane domain. Using the 1.4 kb cDNA as probe in Northern blotting of a panel of messenger ribonucleic acids prepared from human tissues, the parent protein was shown to correspond to a large molecule of about 5.8 kb with a calculated molecular mass of approximately 220 kDa, consistent with earlier immunoblot studies performed in the absence of reducing agents. G2s was strongly expressed in eye muscle, thyroid, and other skeletal muscle and to a lesser extent in pancreas, liver, lung, and heart muscle, but not in kidney or orbital fibroblasts. We tested sera from patients with Graves' hyperthyroidism with and without ophthalmopathy and from control patients and subjects for antibodies against a G2s fusion protein by immunoblotting and enzyme-linked immunosorbent assay. In immunoblotting, antibodies reactive with G2s were identified in 70% of patients with TAO of less than 3 yr duration, 53% with TAO of more than 3 yr duration, 36% with Graves' hyperthyroidism without evident ophthalmopathy, 17% with Hashimoto's thyroiditis, 3% with type 1 diabetes, 23% with nonimmunological thyroid disorders, and 16% of normal subjects. The prevalences, compared to normal values, were significant for the two groups of patients with TAO, but not for the other groups. Tests were positive in 54% of patients with active TAO, 33% with chronic ophthalmopathy, 36% with Graves' hyperthyroidism, 54% with Hashimoto's thyroiditis, 23% with type 1 diabetes, and in 11% of normal subjects using enzyme-linked immunosorbent assay. The antibodies predicted the development of the ocular myopathy subtype of TAO in six of seven patients and the congestive ophthalmopathy subtype in seven of eight patients, respectively, with Graves' hyperthyroidism studied prospectively during and after antithyroid drug therapy. Antibodies reactive with G2s may be early markers of ophthalmopathy in patients with Graves' hyperthyroidism. Because G2s is expressed in both thyroid and eye muscle, immunoreactivity against a shared epitope in the two tissues may explain the well known link...
It is generally accepted that thyroid-associated ophthalmopathy (TAO) is an autoimmune disease of the eye muscle (EM) and the surrounding orbital connective tissue in which circulating antibodies play an important role. Antibodies against EM membrane proteins of 63-67kDa mol. wt. seem to be the best markers of ophthalmopathy in patients with autoimmune thyroid disease. We purified a 63 kDa EM protein using SDS-polyacrylamide gel electrophoresis technology and TAO patients' sera as probes, digested the protein with cyanogen bromide and sequenced immunoreactive peptides. We also screened a human EM library with a rabbit antiserum against 63-65 kDa proteins and affinity purified antibodies from a TAO patient's serum that reacted with a 55 kDa EM membrane protein. From partial sequence information and from DNA sequencing of positive cDNA clones, the protein was identified as calsequestrin, a 63 kDa calcium binding protein localized in the sarcoplasmic reticulum of the muscle fiber. As determined by Northern blotting, calsequestrin was expressed in EM and other skeletal muscle but not thyroid or fibroblasts. Calsequestrin is different from the "64 kDa protein", which has been identified as succinate dehydrogenase flavoprotein subunit, which has a corrected mol. wt. of 67 kDa. Serum antibodies against calsequestrin were found in 40% of patients with clinically active TAO, but in only 4% of those with stable eye disease, and in 5% of normal subjects, by immunoblotting. Although it is possible that autoimmunity against calsequestrin plays a role in the progressive EM damage that characterizes ophthalmopathy it is more likely that the antibodies are secondary to a reaction against some other cell membrane protein, such as the novel thyroid and eye muscle shared protein G2s or the TSH receptor.
Thyroid-associated ophthalmopathy (TAO) is a progressive orbital disorder associated with Graves' hyperthyroidism and, less often, Hashimoto's thyroiditis in which autoantibodies react with orbital antigens and lead to exophthalmos and eye muscle inflammation. Eye muscle (EM) membrane proteins initially reported as 55 and 64 kd are the best markers of ophthalmopathy. The "64-kd protein" is now shown to be the flavoprotein subunit of mitochondrial succinate dehydrogenase and to have a correct molecular weight of 67 kd. We have cloned a fragment of a novel eye muscle protein, which we call G2s, and sequenced 1.4 kb of the full length cDNA. G2s does not share any significant homologies with other reported proteins. The 5.9 kb G2s mRNA, that corresponds to a protein of approximately 220 kd, is expressed in EM, other skeletal muscle and thyroid, but not in other tissues tested. We have also cloned and sequenced a 63-kd eye muscle protein identified as the calcium binding protein calsequestrin. Antibodies against calsequestrin were found in 40% of patients with active ophthalmopathy, but in 0% of normal subjects. Finally, we have sequenced a 19 amino acid fragment of a 55-kd porcine eye muscle membrane protein that exactly matched porcine and human sarcalumenin, a 160-kd glycoprotein localized in the lumen of the longitudinal sarcoplasmic reticulum of the skeletal muscle fiber where it binds calcium. A 53-kd glycoprotein fragment of the molecule corresponds to the 55-kd protein. In a preliminary study, serum antibodies against purified sarcalumenin were detected in 40% of patients with active TAO of less than 1 year duration, but in no controls tested. We porpose that the primary autoantigen in TAO is G2s, which would also explain the association of ophthalmopathy with thyroid autoimmunity, and that antibodies against the intracellular proteins flavoprotein, calsequestrin, and sarcalumenin are secondary markers of an immune-mediated reaction in eye muscle in patients with thyroid autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.