HighlightRecent research shows that sugar availability triggers bud outgrowth. This paper further demonstrates that the effect of sucrose involves changes in the hormonal network related to bud outgrowth, and identifies potential hormones involved in sugar control.
ORCID IDs: 0000-0002-0050-4001 (B.C.S.); 0000-0002-3526-7982 (J.L.); 0000-0001-7896-6049 (M.P.); 0000-0001-7144-1274 (D.X.); 0000-0001-5026-095X (S.Ci.); 0000-0002-6496-3792 (S.R.H.); 0000-0003-1808-5172 (V.P.).In the model plant Arabidopsis (Arabidopsis thaliana), endogenous and environmental signals acting on the shoot apical meristem cause acquisition of inflorescence meristem fate. This results in changed patterns of aerial development seen as the transition from making leaves to the production of flowers separated by elongated internodes. Two related BEL1-like homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), fulfill this transition. Loss of function of these genes impairs stem cell maintenance and blocks internode elongation and flowering. We show here that pny pnf apices misexpress lateral organ boundary genes BLADE-ON-PETIOLE1/2 (BOP1/2) and KNOTTED-LIKE FROM ARABIDOPSIS THALIANA6 (KNAT6) together with ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1). Inactivation of genes in this module fully rescues pny pnf defects. We further show that BOP1 directly activates ATH1, whereas activation of KNAT6 is indirect. The pny pnf restoration correlates with renewed accumulation of transcripts conferring floral meristem identity, including FD, SQUAMOSA PROMOTER-BINDING PROTEIN LIKE genes, LEAFY, and APETALA1. To gain insight into how this module blocks flowering, we analyzed the transcriptome of BOP1-overexpressing plants. Our data suggest a central role for the microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE-microRNA172 module in integrating stress signals conferred in part by promotion of jasmonic acid biosynthesis. These data reveal a potential mechanism by which repression of lateral organ boundary genes by PNY-PNF is essential for flowering.Plant development relies on the activity of the shoot apical meristem (SAM) as a continuous source of founder cells for production of new leaves, shoots, and internodes throughout the life cycle (for review, see Aichinger et al., 2012). A tight balance between the allocation of cells to developing primordia and the perpetuation of pluripotent stem cells in the central zone maintains the SAM at a constant size. In Arabidopsis (Arabidopsis thaliana), the vegetative SAM produces leaves in a spiral phyllotaxy with dormant axillary meristems. In conjunction, internode elongation is repressed, resulting in a basal rosette. The transition to flowering is governed by internal and external signals that converge at the SAM to promote acquisition of inflorescence meristem (IM) fate (for review, see Amasino and Michaels, 2010;Srikanth and Schmid, 2011;Andrés and Coupland, 2012). This process, known as floral evocation, results in new patterns of growth at the shoot apex, including production of flowers, and an increase in stem elongation, called bolting. Lateral organ boundaries are specialized domains of restricted growth that separate meristem and organ compartments and produce axillary meristems (for review, see Aida and Tasaka, 2006;Tian et al., 2014). Early in the transition t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.