Epithelial cells can respond to conserved bacterial products that are internalized after either bacterial invasion or liposome treatment of cells. We report here that the noninvasive Gram-negative pathogen Helicobacter pylori was recognized by epithelial cells via Nod1, an intracellular pathogen-recognition molecule with specificity for Gram-negative peptidoglycan. Nod1 detection of H. pylori depended on the delivery of peptidoglycan to host cells by a bacterial type IV secretion system, encoded by the H. pylori cag pathogenicity island. Consistent with involvement of Nod1 in host defense, Nod1-deficient mice were more susceptible to infection by cag pathogenicity island-positive H. pylori than were wild-type mice. We propose that sensing of H. pylori by Nod1 represents a model for host recognition of noninvasive pathogens.
Synaptic activity-dependent de novo gene transcription is crucial for long-lasting neuronal plasticity and long-term memory. In a forebrain neuronal conditional NF-κB-deficient mouse model, we demonstrate here that the transcription factor NF-κB regulates spatial memory formation, synaptic transmission, and plasticity. Gene profiling experiments and analysis of regulatory regions identified the α catalytic subunit of protein kinase A (PKA), an essential memory regulator, as a new NF-κB target gene. Consequently, NF-κB inhibition led to a decrease in forskolin-induced CREB phosphorylation. Collectively, these results disclose a novel hierarchical transcriptional network involving NF-κB, PKA, and CREB that leads to concerted nuclear transduction of synaptic signals in neurons, accounting for the critical function of NF-κB in learning and memory.
The transcription factor Rel/nuclear factor (NF)-kappaB is known for its fundamental role in regulating immune and inflammatory responses. In the brain, constitutive NF-kappaB activity has been detected exclusively in neurons, and a large diversity of stimuli have been reported to induce NF-kappaB activity. Yet the function of this transcription factor in the nervous system remains unclear, and its role in neuroprotection or neurodegeneration is open to debate. Recently it was suggested that kappaB-driven gene expression in neurons is controlled by Sp1-like factors. To clarify such controversy, we have characterized here a novel mouse model in which the entire NF-kappaB-dependent transcriptional response is abolished in the forebrain. Calcium-calmodulin-dependent kinase II alpha promoter-driven tetracycline transactivator was used for regulated expression of a transdominant negative mutant of inhibitor kappaBalpha (super-repressor) together with a green fluorescent protein tracer. Inhibition of expression of a kappaB-dependent lacZ transgene was shown in triple transgenic mice, which correlated with the loss of kappaB-specific DNA binding. In transgenic organotypic hippocampal slice cultures, expression of the super-repressor led to strong cell death after neurotoxic insults. These data demonstrate for the first time that neuron-restricted ablation of NF-kappaB-driven gene expression increases neurodegeneration. This might lead to the path for new treatments of neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.