Summary Background Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke. Methods We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number CRD42016036602. Findings Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1·34 years [IQR 0·19–2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral microbleeds to those without was 1·35 (95% CI 1·20–1·50) for the composite outcome of intracranial haemorrhage and ischaemic stroke; 2·45 (1·82–3·29) for intracranial haemorrhage and 1·23 (1·08–1·40) for ischaemic stroke. The aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4·55 [95% CI 3·08–6·72] for intracranial haemorrhage vs 1·47 [1·19–1·80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5·52 [3·36–9·05] vs 1·43 [1·07–1·91]; and for ≥20 cerebral microbleeds, aHR 8·61 [4·69–15·81] vs 1·86 [1·23–2·82]). However, irrespective of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95% CI 48–84] per 1000 patient-years vs 27 intracranial haemorrhages [17–41] per 10...
Objective: To investigate whether hemodynamic features of symptomatic intracranial atherosclerotic stenosis (sICAS) might correlate with the risk of stroke relapse, using a computational fluid dynamics (CFD) model. Methods: In a cohort study, we recruited patients with acute ischemic stroke attributed to 50 to 99% ICAS confirmed by computed tomographic angiography (CTA). With CTA-based CFD models, translesional pressure ratio (PR = pressure poststenotic /pressure prestenotic ) and translesional wall shear stress ratio (WSSR = WSS stenotic − throat /WSS prestenotic ) were obtained in each sICAS lesion. Translesional PR ≤ median was defined as low PR and WSSR ≥4th quartile as high WSSR. All patients received standard medical treatment. The primary outcome was recurrent ischemic stroke in the same territory (SIT) within 1 year. Results: Overall, 245 patients (median age = 61 years, 63.7% males) were analyzed. Median translesional PR was 0.94 (interquartile range [IQR] = 0.87-0.97); median translesional WSSR was 13.3 (IQR = 7.0-26.7). SIT occurred in 20 (8.2%) patients, mostly with multiple infarcts in the border zone and/or cortical regions. In multivariate Cox regression, low PR (adjusted hazard ratio [HR] = 3.16, p = 0.026) and high WSSR (adjusted HR = 3.05, p = 0.014) were independently associated with SIT. Patients with both low PR and high WSSR had significantly higher risk of SIT than those with normal PR and WSSR (risk = 17.5% vs 3.0%, adjusted HR = 7.52, p = 0.004). Interpretation: This work represents a step forward in utilizing computational flow simulation techniques in studying intracranial atherosclerotic disease. It reveals a hemodynamic pattern of sICAS that is more prone to stroke relapse, and supports hypoperfusion and artery-to-artery embolism as common mechanisms of ischemic stroke in such patients. ANN NEUROL 2019;85:752-764 I ntracranial atherosclerotic stenosis (ICAS) is a major cause of ischemic stroke in Asian populations, contributing to 30 to 50% of ischemic stroke and transient ischemic attack (TIA). 1,2 In earlier pivotal trials on treatment of symptomatic ICAS (sICAS) patients, such as the Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) trial, risk of recurrent stroke and death was up to 15% at 1 year among those with 50 to 99% sICAS treated with aspirin. 3 In the last few years, risk of recurrent stroke in such patients has decreased with better cardiovascular risk factor management, but still higher than stroke patients without ICAS. For instance, among minor stroke or high-risk TIA patients treated with aspirin plus clopidogrel for 21 days followed by clopidogrel mono therapy for days 22 to 90 in the View this article online at wileyonlinelibrary.com.
We aimed to investigate the roles of antegrade residual flow and leptomeningeal collateral flow in sustaining cerebral perfusion distal to an intracranial atherosclerotic stenosis (ICAS). Patients with apparently normal cerebral perfusion distal to a symptomatic middle cerebral artery (MCA)-M1 stenosis were enrolled. Computational fluid dynamics models were built based on CT angiography to obtain a translesional pressure ratio (PR) to gauge the residual antegrade flow. Leptomeningeal collaterals (LMCs) were scaled on CT angiography. Cerebral perfusion metrics were obtained in CT perfusion maps. Among 83 patients, linear regression analyses revealed that both translesional PR and LMC scale were independently associated with relative ipsilesional mean transit time (rMTT). Subgroup analyses showed that ipsilesional rMTT was significantly associated with translesional PR ( p < 0.001) rather than LMC scale in those with a moderate (50–69%) MCA stenosis, which, however, was only significantly associated with LMC scale ( p = 0.051) in those with a severe (70–99%) stenosis. Antegrade residual flow and leptomeningeal collateral flow have complementary effects in sustaining cerebral perfusion distal to an ICAS, while cerebral perfusion may rely more on the collateral circulation in those with a severe stenosis.
Research in context panel: 445Identifying people at highest risk of ICH may facilitate timely and accurate prognostication to allow mitigation of reversible risk factors for bleeding (e.g. intensive blood pressure control), and selection of participants for clinical trials. While more complex combinations of clinical, biochemical, and radiological markers might further improve stroke risk prediction, balancing accuracy with simplicity will remain important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.