Differential white blood cell counts are essential diagnostic parameters in veterinary practice but knowledge on the genetic architecture controlling variability of leucocyte numbers and relationships is sparse, especially in swine. Total leucocyte numbers (Leu) and the differential leucocyte counts, i.e. the fractions of lymphocytes (Lym), polymorphonuclear leucocytes [neutrophils (Neu), eosinophils (Eos) and basophils (Bas)] and monocytes (Mon) were measured in 139 F(2) pigs from a Meishan/Pietrain family, before and after challenge with the protozoan pathogen Sarcocystis miescheriana for genome-wide quantitative trait loci (QTL) analysis. After infection, the pigs passed through three stages representing acute disease, reconvalescence and chronic disease. Nine genome-wide significant and 29 putative, single QTL controlling leucocyte traits were identified on 15 chromosomes. Because leucocyte traits varied with health and disease status, QTL influencing the leucocyte phenotypes showed specific health/disease patterns. Regions on SSC1, 8 and 12 contained QTL for baseline leucocyte traits. Other QTL regions reached control on leucocyte traits only at distinct stages of the disease model. Two-thirds of the QTL have not been described before. Single QTL explained up to 19% of the phenotypic variance in the F(2) animals. Related traits were partly under common genetic influence. Our analysis confirms that leucocyte trait variation is associated with multiple chromosomal regions.
The outcome of infectious diseases in vertebrates is under genetic control at least to some extent. In swine, e.g., marked differences in resistance/susceptibility to Sarcocystis miescheriana have been shown between Chinese Meishan and European Pietrain pigs, and these differences are associated with high heritabilities. A first step toward the identification of genes and polymorphisms causal for these differences may be the mapping of quantitative trait loci (QTLs). Considering clinical, immunological, and parasitological traits in the above model system, this survey represents the first QTL study on parasite resistance in pigs. QTL mapping was performed in 139 F(2) pigs of a Meishan/Pietrain family infected with S. miescheriana. Fourteen genome-wide significant QTLs were mapped to several chromosomal areas. Among others, major QTLs were identified for bradyzoite numbers in skeletal muscles (F = 17.4; p < 0.001) and for S. miescheriana-specific plasma IgG(2) levels determined 42 days p.i. (F = 20.9; p < 0.001). The QTLs were mapped to different regions of chromosome 7, i.e., to the region of the major histocompatibility complex (bradyzoites) and to an immunoglobulin heavy chain cluster, respectively. These results provide evidence for a direct and causal role for gene variants within these gene clusters (cis-acting) in differences in resistance to S. miescheriana.
Haematological traits are essential diagnostic parameters in veterinary practice but knowledge on the genetic architecture controlling variability of erythroid traits is sparse, especially in swine. To identify QTL for erythroid traits in the pig, haematocrit (HCT), haemoglobin (HB), erythrocyte counts (RBC) and mean corpuscular haemoglobin content (MCHC) were measured in 139 F 2 pigs from a Meishan/Pietrain family, before and after challenge with the protozoan pathogen Sarcocystis miescheriana. The pigs passed through three stages representing acute disease, reconvalescence and chronic disease. Forty-three single QTL controlling erythroid traits were identified on 16 chromosomes. Twelve of the QTL were significant at the genome-wide level while 31 were significant at a chromosomewide level. Because erythroid traits varied with health and disease status, QTL influencing the erythroid phenotypes showed specific health/disease patterns. Regions on SSC5, 7, 8, 12 and 13 contained QTL for baseline erythroid traits, while the other QTL regions affected distinct stages of the disease model. Single QTL explained 9-17% of the phenotypic variance in the F 2 animals. Related traits were partly under common genetic influence. Our analysis confirms that erythroid trait variation differs between Meishan and Pietrain breeds and that this variation is associated with multiple chromosomal regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.